
Physica A xx (xxxx) xxx–xxx

Q1

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Minimal perceptrons for memorizing complex patterns
Q2 Marissa Pastor a,b,1, Juyong Song a,c,1, Danh-Tai Hoang a,d, Junghyo Jo a,c,∗

a Asia Pacific Center for Theoretical Physics, Pohang, South Korea
b Department of Physics, University of San Carlos Talamban, Cebu, Philippines
c Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
d Department of Natural Sciences, Quang Binh University, Dong Hoi, Viet Nam

h i g h l i g h t s

• A new complexity measure for binary patterns is proposed.
• The measure estimates the minimal network size for memorizing binary patterns.
• The predicted minimal network size agrees with simulations of machine learning.
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a b s t r a c t

Feedforward neural networks have been investigated to understand learning andmemory,
as well as applied to numerous practical problems in pattern classification. It is a rule of
thumb that more complex tasks require larger networks. However, the design of optimal
network architectures for specific tasks is still an unsolved fundamental problem. In this
study, we consider three-layered neural networks for memorizing binary patterns. We
developed a new complexity measure of binary patterns, and estimated the minimal
network size for memorizing them as a function of their complexity. We formulated the
minimal network size for regular, random, and complex patterns. In particular, theminimal
size for complex patterns, which are neither ordered nor disordered, was predicted by
measuring their Hamming distances from known ordered patterns. Our predictions agree
with simulations based on the back-propagation algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Neural signaling in synaptic networksmotivated the early study of artificial neural networks, to recapitulate the learning 2

capability of the brain. Their utility has expanded from that inception to serving as alternatives to conventional computers 3

for input/output processing or as exemplars of parallel distributed processing, and they have been successfully applied 4

to pattern classification [1,2] and memory storage [3–6]. Standard implementations of neural networks map inputs xµ
5

to outputs zµ through intermediate processing layers. The M input/output pairs, ξµ
= (xµ, zµ), form a pattern, ξ = 6

{ξ 1, ξ 2, . . . , ξM
}. Note that the pattern in this work refers a set of input/output pairs, not just inputs as usually defined 7

in ‘‘pattern’’ classification problems. This input/output mapping can be achieved in two different ways: The neural network 8

can either (i) learn the underlying rule for the mapping from some training pairs, or (ii) memorize the whole pattern of 9
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Fig. 1. Three-layer feedforward neural network.

input/output pairs and retrieve the stored outputs in response to given inputs. In either way, it is a major impediment that1

the required complexity of network architectures for learning or memorizing certain patterns is, in general, unknown. In2

this paper, we focus on memorizing patterns.3

Designing the optimal network architecture has been known as an NP (Non-deterministic Polynomial-time) problem4

that requires computationally expensive search techniques and optimization [7–10]. Indeed, most attempts use empirical5

approaches and proceed by scanning over different network configurations while utilizing incremental [11] and/or pruning6

algorithms [12,13]. Simple networks may lead to insufficient memory and poor generalization, while complex networks7

lead to poor predictive performance by overestimating each element in patterns [6]. The required complexity of networks8

generally depends on the complexity of patterns for memorizing. Therefore, if the complexity of patterns and networks9

could be quantified, the optimal network architecture could be systematically designed.10

Two popular complexity measures for patterns are Shannon entropy, the degree of uncertainty for describing a11

pattern [14–16], and Kolmogorov complexity, the length of the shortest computer program for generating a pattern [17].12

However, the uncertainty or probability of each element in a pattern is unknown and the algorithmic complexity is itself13

difficult to compute. These difficulties suggest the need for ametric to quantify the practical complexity of patterns relevant14

for perceptrons. Here we propose a simple complexity index and relate it to the minimal network size for memorizing15

patterns.16

This paper is organized as follows: We introduce the mathematical description of our feedforward neural network in17

Section 2, and a storage problemof binary patterns of different complexities in Section 3. Next,we estimateminimal network18

sizes for storing regular binary patterns in Section 4.1 and random binary patterns in Section 4.2, and compare them to19

simulation results. Then, we generalize the complexity formulation to estimate minimal network size for storing complex20

binary patterns in Section 5. Finally, we summarize the paper in Section 6.21

2. Neural network22

We study a three-layer feedforward neural network as shown in Fig. 1. This simple network architecture is successful23

in solving pattern recognition problems [18,19]. In addition, the universal approximation theorem proves that the three-24

layer network suffices to approximate any continuous function, zµ
= f (xµ) [20]. For simplicity, we consider N-dimensional25

vectors of binary inputs xµ
= (xµ

1 , xµ

2 , . . . , xµ

N) and scalar binary outputs zµ. One pattern ξ represents 2N pairs of (xµ, zµ),26

because each component in the N-dimensional input vector takes values xµ

i = 0 or 1. The input/output mapping requires N27

input nodes and a single output node. In the feedforward three-layer network, an input xµ is transformed into the activities28

yµ
= {yµ

1 , yµ

2 , . . . , yµ

H} of H hidden nodes:29

yµ

j = σ
 N

i=1

wjix
µ

i − wj0


, (1)30

where wji is the connection weight from the ith input node to the jth hidden node, and wj0 is the bias of the jth hidden31

node. With these definitions, the jth hidden node is activated when the integrated input signal


i wjix
µ

i exceeds the bias32

wj0 through the sigmoidal activation function, σ(a) = 1/(1+ e−a). The transformation from the hidden layer to the output33

layer follows the same rule:34

zµ
= σ

 H
j=1

vjy
µ

j − v0


, (2)35
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