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• Optimal weighted decoding scheme for multigroup sensor arrays.
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a b s t r a c t

Suprathreshold stochastic resonance (SSR) describes the noise-enhanced effect that occurs,
not in a single element, but rather in an array of nonlinear elements when the signal
is no longer subthreshold. Within the context of SSR, we investigate the optimization
problem of signal recovery through an array of saturating sensors where the response of
each element can be optimally weighted prior to summation, with a performancemeasure
of mean square error (MSE). We consider groups of sensors. Individual sensors within
each group have identical parameters, but each group has distinct parameters. We find
that the optimally weighting array always provides a lower MSE in comparison with
the unweighted array for weak and moderate noise intensities. Moreover, as the slope
parameter of sensors increases, theMSE superiority of the optimallyweighting array shows
a peak, and then tends to a fixed value. These results indicate that SSRwith optimalweights,
as a generalmechanismof enhancement by noise, is of potential interest to signal recovery.

© 2016 Published by Elsevier B.V.

1. Introduction 1

Stochastic resonance (SR) essentially represents a class of phenomenon where, for certain types of nonlinear coupling 2

between signal and noise, the presence or the addition of noise provides an improved performance over the absence 3

of noise [1–5]. This counter-intuitive effect was first introduced in the field of meteorology [1], and it has gradually 4

been observed in a wide variety of fields, for instance, physics, biology and electronic engineering [2–23]. Initial studies 5

of SR mainly focused on dynamical systems with a nonlinearity due to a simple threshold operation or a potential 6

barrier [1–23], where the enhanced response of a weak signal results from noise-assisted threshold or barrier crossings. 7
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Fig. 1. Weighted summing array of N identical noisy nonlinear elements, g(·). Each of these N elements operates on a common signal x subject to additive
noise ηi . The output of each individual element yi is multiplied by the weighting coefficient wi , and the overall output ŷ =

N
i=1 wiyi .

With a growing interest in SR, the threshold-free or barrier-free nonlinear system is also found to demonstrate noise-1

enhanced signal transmission effects [24–28]. Especially, some nonlinearities with saturation have been observed to2

exhibit SR with improved signal-to-noise ratio, cross-correlation and mutual information [27,28]. Furthermore, another3

distinct SR mechanism was explored in coupled or uncoupled parallel arrays of nonlinear systems which significantly4

extended the concept of SR to broader conditions [29–45]. These related results show that the summed response of parallel5

nonlinear elements with uncorrelated noise can be more efficient, under certain performance measures, than using a single6

nonlinearity with no noise. Of course, each element in these parallel arrays can be threshold-free [41–45] or can perform7

a thresholding operation [29–40], and in the latter case, suprathreshold stochastic resonance (SSR) occurs for a summing8

network of threshold comparators [30–32].9

For the case of arrays of identical threshold comparators, SSR can be also described in terms of stochastic signal10

quantization [36–39]. In line with this concept, McDonnell et al. have examined SSR with emphasis on finding the11

optimality of the quantization, in terms of lossy source coding and quantization theory, by using the mean square error12

(MSE) as the measure of distortion [36–38]. Recently, we investigated the decoding of a quantized signal and proposed13

an optimal weighted decoding scheme [39]. Our previous study showed that, for particular noise levels and threshold14

value distributions, the performance of optimally weighting the quantizer responses is superior to the original unweighted15

array [39].16

However, the previouswork [39] restricts the optimalweighted decoding scheme only to threshold nonlinearities. In this17

paper, we will generalize the optimal weighted decoding scheme to arrays composed of arbitrary nonlinearities, and derive18

the expression of the decoding output for multigroup parameter settings. Specifically, we apply the decoding approach19

to arrays of saturating sensors. By dividing the nonlinear elements into different sized groups, we compare optimally20

weighting the element responses with the original unweighted arrays. The results show that, with regular intervals of21

shifted parameters in multigroups, the MSE performance of optimal weighted decoding is superior to that of the original22

unweighted arrays for weak andmoderate noise intensities. Moreover, this superiority of the MSE distortion becomesmore23

evident with increasing group size. In addition, as the slope parameter varies, the MSE difference of two different decoding24

schemes reaches a maximum, and then decays to a fixed value. Finally, at a given noise level and for the group size of two,25

we also compare two different decoding schemes in the case of optimized shifted parameters within each group.26

2. Model and method27

We consider a weighted summing array of N noisy nonlinear elements receiving an input random signal x(t) with28

standard deviation σx, as shown in Fig. 1. Each element of the array is endowed with the same input–output characteristic,29

modeled by the static (memoryless) function g. The ith nonlinear element is subject to independent and identically30

distributed (i.i.d.) additive noise component ηi with standard deviation ση , which is independent of the signal x(t).31

Accordingly, each element produces the output signal yi(t) = g[x(t) + ηi(t)]. The output signal yi(t) is multiplied by the32

weighting coefficient wi (wi ∈ ℜ), so as to yield the weighted output wiyi. Then, all weighted outputs are summed to give33

the overall output of array ŷ =
N

i=1 wiyi.34

When all weighting coefficients wi are equal to unity, the decoding method is performed by weighting after summation35

for i = 1, 2, . . . ,N .When theweighting coefficientwi is arbitrarily chosen, the decoding function is performed byweighting36

before summation. It is known that if the reconstruction points are linearly spaced, then the optimal reconstruction points37

are given by Wiener decoding [46] which is carried out by weighting after summation. For the case of E[x] = 0, the38

reconstructed value ŷw with Wiener linear decoding is expressed by [38,46]39

ŷw =
E[xy]
var[y]

(y − E[y]), (1)40

where y =
N

i=1 yi represents the unweighted sum of the array response and var[y] is the variance of y.41
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