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h i g h l i g h t s

• The transition from microscopic reversibility to macroscopic irreversibility.
• Reversible and recurrent behavior is tied to deterministic rules of motion.
• Irreversible behavior arises from the introduction of probabilistic considerations.

a r t i c l e i n f o

Article history:
Received 20 October 2015
Received in revised form 2 March 2016
Available online 6 April 2016

Keywords:
Microscopic reversibility
Macroscopic irreversibility
Entropy
Coarse-graining
Cellular automata

a b s t r a c t

We present coarse-grained descriptions and computations of the time evolution of a
lattice gas system of indistinguishable particles, whose microscopic laws of motion are
exactly reversible, in order to investigate how or what kind of macroscopically irreversible
behavior may eventually arise. With increasing coarse-graining and number of particles,
relative fluctuations of entropy rapidly decrease and apparently irreversible behavior
unfolds. Although that behavior becomes typical in those limits and within a certain range,
it is never absolutely irreversible for any individual system with specific initial conditions.
Irreversible behavior may arise in various ways. We illustrate one possibility by replacing
detailed integer occupation numbers at lattice sites with particle probability densities that
evolve diffusively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Thermodynamic descriptions of the approach to equilibrium for macroscopic systems are typically irreversible, whereas
classical or quantum descriptions of motion of their microscopic constituents are typically reversible. Reconciling these
views is still a matter of inquiry.

In amacroscopic thermodynamic framework, wemay characterize a system in terms of just a fewmacroscopic variables,
whereas in an underlying microscopic approach we must typically consider a vastly greater number of degrees of freedom,
such as those accounting for velocities and positions of all particles in the system.

A ground-breaking connection between microscopic and macroscopic viewpoints was established by Boltzmann in
an 1872 paper, where he derived his celebrated transport equation and his consequent H-theorem [1–9]. That theorem
provided a microscopic insight on how prototypical physical systems with a large number of particles exhibit a natural
tendency to evolve towards definite states of macroscopic equilibrium. The H-theorem also demonstrated how a system,
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after attaining a state of macroscopic equilibrium, tends to remain in that macroscopic state almost indefinitely, if left
undisturbed.

From the beginning, Boltzmann’s revolutionary ideas were fiercely debated [6–9]. Major developments in statistical and
quantum theories have since vastly broadened, but invariably confirmed, the scope and validity of Boltzmann’s ideas. Still,
the original question remains: how or when can macroscopic irreversibility ultimately arise frommicroscopic reversibility,
either in theory or in practice? Boltzmann’s H-theorem applied specifically to dilute gases and he arrived at its conclusion
by introducing a probabilistic element, known as ‘Stosszahlansatz’, or the assumption of ‘molecular chaos’, which constrains
the manner in which particles may exchange momentum through collisions. Based on that microscopic assumption, the H-
theorem describes a thermodynamic evolution of entropy towards a most probable macroscopic state of equilibrium [1–9].

Those who initially objected to Boltzmann’s ideas did so on the basis of two major difficulties. The first, introduced by
Thomson (1874) and Loschmidt (1876), arises from the apparent incompatibility between the time-reversal symmetry of
the laws of motion applied to atoms and molecules and the characteristic irreversibility of macroscopic thermodynamics.
This leads to the so called ‘arrow-of-time dilemma’, whose possible origins have ever since been extensively debated and
broadened [10]. The second difficulty, originally stressed by Zermelo (1896), refers to Poincaré’s recurrence theorem (1890),
stating that ‘‘any phase-space configuration (q, p) of a system enclosed in a finite volume will be repeated as accurately as
one wishes after a finite (be it possibly very long) interval of time’’, which has become known as the recurrence time or a
Poincaré cycle [11]. Quantum mechanical versions of the recurrence theorem have been subsequently derived [12–14].

Under certain conditions, which are technically specified as the Boltzmann–Grad limit, Lanford has been able to derive
rigorously the irreversible Boltzmann transport equation from the reversible Hamiltonian dynamics of a system of hard
spheres, or more generally for finite range interactions. His technique and results are presently limited to very short times,
and apply to typical microscopic phase-space states with respect to a suitable measure [7].

Some rigorous results in the statistical treatment of the quantummechanical evolution of complexmulti-particle systems
towards various states of equilibrium have been recently derived [15,16]. Such remarkable theoretical progress has been
inspired or supported by computational models [17–19].

Questions of microscopic reversibility vs. macroscopic irreversibility are still subject to fundamental inquiry [20–23].
Technological advances allow such issues to be probed at increasingly deeper levels ofmicroscopic dynamics [24,25]. Recent
and future developments are expected to advance our understanding of relations between microscopic and macroscopic
laws of motion and corresponding time evolutions of both ‘simple’ and ‘complex’ systems [26].

A formal discussion of reversible-to-irreversible transitions that may arise in complex systems with a large number of
degrees of freedom is beyond the scope of this paper. Instead, we consider, mainly from a numerical perspective, a discrete
model that simply illustrates certain features of reversible-to-irreversible transitions.

2. A lattice gas system

The two-dimensional system that we consider is a well-known square-lattice gas model originally introduced by Hardy,
Pomeau and de Pazzis (HPP) [27,28]. It consists of indistinguishable particles that can occupy only the sites or nodes of
a square lattice, with velocities of equal magnitude that can have only lattice directions, i.e., up, right, down, and left.
Furthermore, no two particles are allowed to have the same velocity direction at the same site. Figs. 1a and 1b show a
lattice gas example, where particles are represented by arrows, indicating their velocity directions. Like space and direction,
time is also discretized. In each time unit, the particle dynamics is determined by two consecutive steps:

(1) Translation step: Each particle jumps to an adjacent site according to its velocity direction—see Fig. 1a and 1b. If a particle
reaches an edge of the system, then its velocity direction is rotated by 180° at that time.

(2) Interaction step: No rotation of velocity direction occurs otherwise, except in the following case. When just two particles
(and no more) enter the same site with opposite directions, their directions are rotated by 90°, while still maintaining
opposite directions. Particles thus become indistinguishable, because there is noway to determinewhich particle rotated
by 90° to its right or to its left. The computational algorithm implementing this rule is more explicitly described in
Appendix A.

The system evolves deterministically and reversibly in time by application of those two simple rules. For example, in Fig. 1a
we show a region of a lattice gas system at time t = t ′, where sites are identified by their Cartesian coordinates and particles
are represented by arrows indicating their directions. For example, site (6, 6) is maximally occupied with four particles. At
the subsequent time t = t ′ +1, after one translation and one interaction step, the system evolves to the configuration shown
in Fig. 1b. Notice, for example, that although particles a, b, and c have met at site (5, 5), they were not allowed to interact,
hence they have all maintained their identity and direction. Conversely, particles e and f, observed at t = t ′ in Fig. 1a, meet
all by themselves at site (6, 7) at t = t ′ + 1 in Fig. 1b: they must then rotate their directions by 90°, while still maintaining
opposite directions. These two particles must now be re-labeled with different symbols, e.g., u and v in Fig. 1b, because our
rules prevent the identification of each individual particle just after it has been involved in a 90° rotation, which could have
been either to its right or to its left. Particles thus become indistinguishable on that account, as demonstrated algorithmically
in Appendix A.

The rules of motion of our simple system mimic rudiments of the microscopic dynamics obeyed by atoms or molecules
in a dilute fluid. Basically, these microscopic rules and laws are deterministic, reversible, and applicable to indistinguishable
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