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h i g h l i g h t s

• A MaxEnt-method is shown to predict the event-distribution for broad class of real systems.
• Human heights, wind-speed, length of travels and frequency of words are included.
• The complete event-distributions are obtained from a small amount of accessible data.
• Rare events are predicted with high accuracy.
• The likely determines the unlikely for this class of systems.
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a b s t r a c t

Wepoint out that the functional formdescribing the frequency of sizes of events in complex
systems (e.g. earthquakes, forest fires, bursts of neuronal activity) can be obtained from
maximal likelihood inference, which, remarkably, only involve a few available observed
measures such as number of events, total event size and extremes. Most importantly, the
method is able to predictwith high accuracy the frequency of the rare extreme events. To be
able to predict the few, often big impact events, from the frequent small events is of course
of great general importance. For a data set of wind speed we are able to predict the fre-
quency of gales with good precision. We analyse several examples ranging from the short-
est length of a recruit to the number of Chinese characters which occur only once in a text.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A detailed understanding of the mechanisms controlling a certain phenomena can often lead to reliable predictions
of what to expect. When one considers complex phenomena, say the weather or language, such a very detailed level of
description is typically not possible. Despite of this lack of detail it can still be possible to establish a statistical accurate
account of possible behaviours [1,2]. The maximum entropy, or likelihood, principle can be applied to a very broad range
of phenomena [3–9]. The method consists in estimating the probabilistic description, which is statistically most likely to
be consistent with the observations available. It is important to keep in mind that no causal mechanistic description is
invoked. Rather one assume that the underlying combinatorial multitude will make happen what is most plausible under
given observed constraints. That is, the macro-events generated by the largest number of micro-events are most likely to
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Table 1
Likelihood predictions.

Known data M N k∗ Prediction Obtained Measured

Recruitsa 8770975 cm 48907 kmax = 207 cm H⇒ 74.88% 69.08%
Wind speedb 232695 m/s 23332 5.5% is 5 m/s H⇒ 0.0058% 0.0084%
Bus-tripsc 35770210 km 7083210 10% ∈ [0, 1] km H⇒ ∈ [2, 3] km ∈ [2, 3] km

H⇒ ≥9 km = 10% ≥9 km = 9.8%
Car-drivesd 448778 km 48569 kc = 90 km H⇒ 14.7% 14.5%
Signse 17915 1552 kmax = 747 H⇒ 40.51% 29.12%
Englishf 60181 6570 kmax = 3300 H⇒ 50.44% 52.69%
a Swedish recruits born 1975 (see Section 3):M = total length, N = total number, kmax = tallest, H⇒ obtained = shortest in % of tallest.
b Wind speed in Öland island, Sweden (see Section 3):M = total wind speed observed, N = total observation days, k∗ = 5.5% of days the observed wind

speed is 5 m/s, H⇒ obtained = % of wind speed equal to or larger than 32 m/s.
c Bus-trips in Shijiazhuang (see Section 3):M = total distance,N = total number of trips, k∗ = 10% of trips in interval [0, 1] km,H⇒ obtained= position

of maximum and % of trips larger than 9 km.
d Car-drives in Detroit (see Section 3): M = total distance, N = total number, k∗ = the longest 10 trips longer than kc = 90 km, H⇒ obtained = % of

trips in interval [0, 1] km.
e The Chinese novel A Q Zheng Zhuan by Xun Lu written in Chinese characters (see Section 3): M = total number of characters, N = number of different

characters, kmax = occurrence of most the frequent character, H⇒ obtained = % of characters occurring only once.
f The English novel Under the Greenwood Tree by Thomas Hardy (see Section 3): M = total number of English words, N = number of different words,

kmax = occurrence of most the frequent word, H⇒ obtained = % of words occurring only once.

occur. Say, throw two dice, it is more likely that the sum of the eyes is equal to 7 than equal to 2, since 6 micro-events lead
to 7 eyes and only one to 2 eyes.

It is therefore to be expected that the method will work for stochastic phenomena like lotteries or dice games. However,
in the present work we demonstrate that even for causal highly interdependent and deterministic situations the maximum
entropy principle leads often, but not always, to predictions of high precision. Below we will comment on the conditions
under which reliable predictions may be expected.

The maximum entropy method combined with Bayesian inference is very well established and used routinely, see
Ref. [4]. Here we describe how themethodology can be developed to obtain accurate estimates of the entire distribution and
predictions about extreme behaviour based on just three numbers: a measure of the total ‘‘size’’, the number of elements
and a single measure of most frequent events or the extreme observed. To emphasise the broad applicability we study six
different phenomena: heights of humans, wind speed, bus trips, car drives and English and Chinese language.

In many applications rare extreme events are of particular importance, e.g. gales; while their rarity makes it difficult to
estimate their frequency of occurrence from observation of the past. We therefore focus on how the method can extract the
statistics of the unlikely from the easily observed most frequent events.

Table 1 shows how we in all the considered cases from only three observables, all which are typically easy to access, are
able to extract good predictions about various types of extreme or marginal behaviour. One may wonder how a stochastic
procedure like the MaxEnt analysis underlying the predictions in Table 1 is able to handle presumably rational and fairly
deterministic phenomena like the choice made when travelling a certain distance or the words chosen to express thoughts
in a written text. The conclusion is obviously not that some unrecognised stochasticity is in reality governing our choice of
words, our travel needs or the growth of recruits or the speed of the wind.

The reason is that despite each individual choice of journey, expression in terms of words or growth of a person may
very well be entirely deterministic, in each case large numbers of possible choices exist which leads to a huge number
of combinations. So when considering an large collection of realisations of these choices, we cannot distinguish between
underlying proper stochastic processes or deterministic processes with a very large sample space. The situation is not very
different from when we use statistics to analyse the throw of dice. Each throw is controlled by deterministic mechanics,
different throws are subject to slightly different conditions and therefore a large set of throws manifests the combinatorial
possibilities available to each deterministic throw.

Section 2 gives a brief review and motivation of the predictive method by which the results are obtained. Results for six
explicit examples are given and discussed in some detail in Section 3. Finally, a sum-up and a broader perspective is given
in Section 4.

2. Predictive method

To recall how it is typically applied we consider a set of boxes containing N balls [10]. There are N boxes and M
unnumbered (indistinguishable) balls. The balls are scrambled by randomly picking two boxes and then moving one ball
from the first to the second. The scrambling will produce N(k) boxes which contain k balls. A stationary probability
distribution, P(k), describing an ensemble of boxes and balls, is reached after many swaps of balls. In this ensemble the
average number of boxes with k balls is given by NP(k). The Shannon entropy of the probability distribution is given by
the functional S[P(k)] = −


k P(k) ln(P(k)). To find the most likely distribution P(k) subject to the relevant constraints,

one maximises the functional G[P(k)] = S − b⟨k⟩ − b⟨1⟩, which imposes the constraint M/N = ⟨k⟩ =


k kP(k), i.e. the
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