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h i g h l i g h t s

• We introduce forest likelihood to assess complexity of sparse networks without loops.
• Forest likelihood involves non-preferential attachments to construct a forest.
• Properties and examples for forest likelihood are presented.
• Analytical formula and algorithms to compute forest likelihood are given.
• Forest likelihood of synthetic networks and real networks are studied.

a r t i c l e i n f o

Article history:
Received 3 January 2016
Received in revised form 14 February 2016
Available online 29 March 2016

Keywords:
Likelihood
Growing networks
Forest
Graph complexity

a b s t r a c t

Howcomplex a network is crucially impacts its function and performance. Inmanymodern
applications, the networks involved have a growth property and sparse structures, which
pose challenges to physicists and applied mathematicians. In this paper, we introduce the
forest likelihood as a plausible measure to gauge how difficult it is to construct a forest in
a non-preferential attachment way. Based on the notions of admittable labeling and path
construction, we propose algorithms for computing the forest likelihood of a given forest.
Concrete examples aswell as the distributions of forest likelihoods for all forestswith some
fixed numbers of nodes are presented. Moreover, we illustrate the ideas on real-life net-
works, including a benzenoid tree, amathematical family tree, and a peer-to-peer network.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A large variety of real-life complex systems in nature, technology and society can be epitomized by networks with
nodes interconnected by edges [1,2]. The dynamics and function of complex systems are intimately related to the structural
complications of these underlying networks. Although complexity in networks, like life and consciousness, does not have
a rigorous definition, it may be viewed, from an abstract perspective, as a function of state and rate of change over the
components of a network. It often goes side by side with notions like connectivity, self-organization, nonlinearity, etc.
Many graph-theoretic measures, based on different heuristics, have been proposed to gauge the complexity of networks.
For instance, the complexity of a network has been defined to be the number of its spanning trees [3,4]. Linear complexity
of a network is the smallest number of arithmetic operations required to compute Ax, where A is the adjacencymatrix of the
network [5]. Complexity can also be defined as the number of Boolean operations, such as union and intersection, required
to generate the network starting from a star [6]. On top of that, motivated by applications in biology and chemistry, the
notion of graph entropy was used to measure network complexity [7].

Nowadays, it is well-known that numerous real systems have a common property of growth, where the numbers of
nodes and edges evolve over time [8–10]. The above mentioned complexity measures, based on either combinatorial or
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algebraic operations, unfortunately shed little light on the natural growth of networks. As a result, they seem to be not
useful in quantifying topological complications within the context of network theory. Recently, Banerji et al. [11] proposed
the notion of graph likelihood to characterize the complexity of growing networks. They grow graphs by attaching nodes one
by one starting from a single node. At each subsequent step, the neighbors of the newly added node are chosen uniformly
at random, and the number is a uniform random variable within the range defined by the number of nodes already present.
The graph likelihood is then defined to be the probability that a given graph on N nodes is obtained in this manner after
N steps. Clearly, every graph can be constructed in this way (an analogue of the so-called infinite monkey theorem [12]).
Using a rooted tree decomposition algorithm, the authors in Ref. [11] obtained a closed formula for the graph likelihood.
They explicitly computed the graph likelihood for some special graphs including complete graphs, paths, and cycles.

In the meantime, thanks to the progress of data science, many real-world networks are found to be sparse (see Table II
in Ref. [13] and Table 1 in Ref. [14]), namely, the number of edges in the network of size N is about O(N). Moreover, in most
random network models the structure is locally tree-like [15–17]. It is imperative, therefore, to have complexity measures
tailored for sparse networks.

Motivated by the above considerations, we in this paper develop a complexity measure accommodating sparse graphs,
or more precisely, for forests, which are disjoint unions of tree components. This measure, which we referred to as forest
likelihood, involves a natural non-preferential attachment similar to Ref. [11], but we are able to focus only on sparse
graphs (see Remark 1). In Section 2, we define the forest likelihood and present some concrete examples. In Section 3,
we describe algorithms to calculate the forest likelihood of a given forest, as well as the upper and lower bounds involving
its automorphism group. By virtue of the notions of admittable labeling and path construction, we give a closed formula
for the forest likelihood. In Section 4, we show the feasibility of our algorithms by computing the forest likelihoods for all
forests with some fixed numbers of nodes. Applications to a benzenoid tree, a mathematical family tree, and a peer-to-peer
network are provided. Finally, we conclude the paper in Section 5 with further remarks.

2. Forest likelihood and some examples

Throughout the paper, we use ‘graph’ and ‘network’ interchangeably. Let G = (V (G), E(G)) denote a graphwith the node
set V (G) and the edge set E(G). We construct the random graph sequence {Gt}t≥1 as follows.
• Let G1 = K1, the graph on a single node.
• For t ≥ 2, let d(t) be a random variable with Bernoulli distribution Ber(1/2) and construct Gt by adding a new node to

Gt−1 and connecting it to a uniformly random subset of size d(t) of V (Gt−1).

In other words, if we let V (Gt−1) = {v1, v2, . . . , vt−1}, then at the tth step we select a number d(t) ∈ {0, 1} with equal
probability. We then add a new node vt and connect it to d(t) randomly chosen node in V (Gt−1) with equal probability. (If
d(t) = 0, vt is isolated in Gt .) Obviously, no cycle appears in Gt , i.e., Gt forms a forest for t ≥ 1.

The above construction reflects an interesting non-preferential attachmentmechanism, where no local knowledge of the
network is assumed except the labels of the nodes. To our knowledge, such non-preferential growing processes were first
formulated by Janson and Severini [18], which constitute a natural counterpart of the Barabási–Albert model [9].

Definition 1. Let G be a forest on t nodes. The forest likelihood of G, denoted by F L(G), is defined as the probability that
Gt = G, where Gt is obtained by the above construction. Namely, F L(G) = P(Gt = G).

Remark 1. Clearly, if we relax d(t) ∈ {0, 1} to d(t) ∈ {0, 1, . . . , t − 1}, we readily recover the (graph) likelihood studied
in Ref. [11]. However, we clarify that the forest likelihood is different from conditional likelihood given that G is a forest.
The reason is that a forest can also be generated by attaching two or more edges at a time. A simple example consists of
adding an isolated node in the 2nd step, and adding a node with degree 2 at the 3rd step. The idea of conditional likelihood
is natural but its computation seems to be a formidable task. This partially motivated our consideration of forest likelihood.

Proposition 1. Let K1,t−1 be the star graph on t nodes. Then F L(K1,t−1) = 1/2 for t = 2 and F L(K1,t−1) =
1

2t−2(t−1)!
for

t ≥ 3.
Proof. For t = 2, F L(K1,1) = P(d(2) = 1) · P({v1, v2} ∈ E(G2)) = 1/2 · 1 = 1/2.

For t ≥ 3, we divide it into two cases (see Fig. 1).
(i) Since v1 is the internal node, we have P(d(2) = 1) · P({v1, v2} ∈ E(Gt)) = 1/2, and similarly for i ≥ 3,

P(d(i) = 1) · P({v1, vi} ∈ E(Gt)) =
1
2 ·

1
i−1 . Therefore,

F L(K1,t−1 in (i)) =

t
i=2


1
2

·
1

i − 1


=

1
2t−1(t − 1)!

.

(ii) Reasoning similarly as above, we have

F L(K1,t−1 in (ii)) =

t
i=2


1
2

·
1

i − 1


=

1
2t−1(t − 1)!

.

Combining (i) and (ii), we obtain the desired result. �



Download English Version:

https://daneshyari.com/en/article/7377721

Download Persian Version:

https://daneshyari.com/article/7377721

Daneshyari.com

https://daneshyari.com/en/article/7377721
https://daneshyari.com/article/7377721
https://daneshyari.com

