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h i g h l i g h t s

• Obtain explicit expression of the number of close-packed dimers of the 33.42 lattice with cylindrical boundary condition.
• Obtain the dimer entropy of 33.42 lattice with cylindrical and toroidal boundary conditions.
• Prove that the entropy of 33.42 lattice is the same for cylindrical and toroidal boundary conditions.
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a b s t r a c t

In this work, we obtain explicit expression of the number of close-packed dimers (perfect
matchings) of the 33.42 lattice with cylindrical boundary condition. Particularly, we
show that the entropy of 33.42 lattice is the same for cylindrical and toroidal boundary
conditions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A central problem in statistical physics and combinatorial mathematics is the enumeration of close-packed dimers,
often referred to as perfect matchings in the mathematical literature, on lattices which mimics the adsorption of diatomic
molecules on a surface [1]. In 1961, Kasteleyn [2] found a formula for the number of close-packed dimers of an m × n
quadratic lattice graph with both free and toroidal boundary conditions. Temperley and Fisher [3] used a different method
and arrived at the same result at nearly the same time. Both lines of calculation showed that the logarithm of the number
of close-packed dimers, divided by mn/2, converges to 2c/π ≈ 0.5831 as m, n → ∞, where c is Catalan’s constant. This
limit is called the entropy of the quadratic lattice graph and the corresponding problem was called the dimer problem by
the statistical physicists, where the entropy has a factor of Boltzmann’s constant and in this paper the Boltzmann factor
will be set equal to one. In 1992, Elkies et al. [4] studied the enumeration of close-packed dimers of regions called Aztec
diamonds, and showed that the entropy equals log 2/2 ≈ 0.35. The problem involving enumeration of close-packed dimers
of another type of quadratic lattices with different boundary conditions was studied by Sachs and Zeritz [5] and a different
entropy was obtained. These results showed that the entropy of the quadratic lattice can generally be strongly dependent
on their boundary conditions. It should be pointed out that the dimer model on the hexagonal (Kasteleyn or brick) lattice
has a ‘‘frozen’’ ground state, which sort of resembles the ground state of the ferromagnetic six-vertex model. It has been
shown that the entropy of the six-vertex model does depend on the boundary conditions [6].
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Kenyon, Okounkov, and Sheffield [7] considered the problem of enumerating close-packed dimers of the doubly period
bipartite graph on a torus. They proved that the number of close-packed dimers of the doubly period plane bipartite graph
G can be expressed in terms of four determinants and they expressed the entropy of G as a double integral.

The exact solution of the dimer problem was obtained for many lattices such as the quadratic lattice [8,2], 8.8.4
lattice [9], hexagonal lattice, triangular lattice, Kagome lattice, 3-12-12 lattice, union Jack lattice, etc. with toroidal boundary
condition [10]. The exact solution of the dimer problem has been extended to the cylindrical condition [11,12]. Wu and
Wang [13] obtained the exact result on the enumeration of close-packed dimers on a finite Kagome lattice with general
asymmetric dimer weights under the cylindrical boundary condition. The result by Wu and Wang implies that the Kagome
lattices with the cylindrical and toroidal boundary conditions have the same entropy. This phenomenon also took place
for some other lattices with the cylindrical and toroidal boundary conditions [14,15], and cylindrical, toroidal and Klein
bottle [16].

In this paper, we consider the 33.42 lattice. We obtain explicit expressions of the number of close-packed dimers with
cylindrical boundary condition and entropy for this lattice with cylindrical and toroidal boundary conditions. Our results
imply that the 33.42 lattices with cylindrical and toroidal boundary conditions have the same entropy.

2. Pfaffians

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. An even cycle C of G is said to be nice if
the subgraph G− C (obtained from G by deleting all vertices of C) has a close-packed dimer. Let D be an orientation of G. An
even cycle C is said to be oddly oriented in D if it has an odd number of edges directed in either direction of C . Otherwise C is
evenly oriented. We say that an orientation D is a Pfaffian orientation of G if every nice cycle with even length of G is oddly
oriented in D. A graph is a Pfaffian graph if it has a Pfaffian orientation. There are some results characterizing the Pfaffian
graphs. Little [17] gave a well known result that if a bipartite graph G contains no subdivision of K3,3, then G has a Pfaffian
orientation. Fischer and Little [18,19] gave a characterization of Pfaffian near bipartite graphs. McCuaig [20], and McCuaig,
Robertson et al. [21], and Robertson, Seymour et al. [22] found a polynomial-time algorithm to show whether a bipartite
graph has a Pfaffian orientation. Norine and Thomas [23] exhibited an infinite family of minimal non-Pfaffian graphs with
respect to the matching minor. For a recent survey of Pfaffian orientations of graphs, please see Thomas [24].

The Pfaffian method enumerating close-packed dimers of plane graphs was independently discovered by Kasteleyn [2],
Fisher [8], and Temperley [3]. For a planar graph embedded in the plane, the method produces a skew symmetric matrix A
such that the number of close-packed dimers of G can be expressed by the Pfaffian of thematrix A. Alternatively, the Pfaffian
can be replaced by the square root of the determinant of A. By using this method, Kasteleyn [2], Fisher [8] and Temperley [3]
solved independently a famous problemon enumerating close-packeddimers of anm×nquadratic lattice graph in statistical
physics-Dimer problem. Kasteleyn also extended his approach to toroidal grids in Refs. [2,25,26] with this Pfaffian method.
Given a simple graph Gwith n vertices, let Ge be an arbitrary orientation of G. The skew adjacency matrix of Ge, denoted by
A(Ge), is defined as follows:

A(Ge) = (aij)n×n,

where

aij =

1 if (vi, vj) is an arc of Ge,
−1 if (vj, vi) is an arc of Ge,
0 otherwise.

Obviously, A(Ge) is a skew symmetricmatrix. Throughout this paper, we denote byM(G) the number of close-packed dimers
of a graph G.

Lemma 2.1 (Lovaśz et al. [27]). If Ge is a Pfaffian orientation of a graph G, then

M(G) =


det(A(Ge)),

where A(Ge) is the skew adjacency matrix of Ge.

Lemma 2.2 (Lovaśz et al. [27]). If a connected plane graph G has an orientation Ge such that every boundary face – except possibly
the infinite face – has an odd number of edges oriented clockwise, then in every cycle the number of edges oriented clockwise is of
opposite parity to the number of vertices of Ge inside the cycle. Consequently, Ge is a Pfaffian orientation.

3. The number of close-packed dimers and entropies

The 33.42 lattice St(2m, 2n) with toroidal boundary condition can be constructed by starting with a 2m × 2n square
lattice and adding a diagonal edge connecting the vertices in, say, the upper left to the lower right corners of each square
in every other row as shown in Fig. 1(a), where a1 = b1, a2m = b∗
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