
Physica A 450 (2016) 134–147

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Bosonic binary mixtures with Josephson-type interactions
Valéria de C. Souza a, Zochil González Arenas b, Daniel G. Barci a,∗,
Cesar A. Linhares a

a Departamento de Física Teórica, Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524,
20550-013, Rio de Janeiro, RJ, Brazil
b Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rua São
Francisco Xavier 524, 20550-900, Rio de Janeiro, RJ, Brazil

h i g h l i g h t s

• A bosonic binary mixture with imbalanced interactions is studied.
• An effective one-loop potential for an O(2)model is computed.
• Condensate fractions as functions of temperature and chemical potential are presented.
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a b s t r a c t

Motivated by experiments in bosonic mixtures composed of a single element in two
different hyperfine states, we study bosonic binary mixtures in the presence of Josephson
interactions between species. We focus on a particular model with O(2) isospin symmetry,
lifted by an imbalanced population parametrized by a Rabi frequency,ΩR, and a detuning,
ν, which couples the phases of both species. We have studied the model at mean-field
approximation plusGaussian fluctuations.Wehave found that both species simultaneously
condensate belowa critical temperature Tc and the relative phases are lockedby the applied
laser phase, α. Moreover, the condensate fractions are strongly dependent on the ratio
ΩR/ | ν | that is not affected by thermal fluctuations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multicomponent quantum gases are fascinating systems [1]. Basic research in this area has enormously grown in the
last few years [2]. Due to the ability of optically trapping and cooling gases to extremely low temperatures, it is possible to
study different phenomena in bosonic [3,4] as well as fermionic mixtures [5]. Important quantum effects like Bose–Einstein
condensation (BEC) and superconductivity can now be studied in a very controlled way inmulticomponent atomic systems.

Interesting experiments with mixed bosonic quantum fluids have been done by simultaneously trapping 87Rb atoms in
two different hyperfine states [6–9]. The relative population is reached by applying a coupling field characterized by a Rabi
frequency ΩR and a detuning ν with respect to the spacing between the energy levels of the two hyperfine states. In this
way, it is possible to transfer atoms from one hyperfine state to the other, producing a Josephson-type interaction between
species [10–12].

In general, the name ‘‘Josephson interaction’’ refers to the interaction of a large number of bosonic degrees of freedom
allowed to occupy two different quantum states. Although it was originally proposed in superconductor systems [13], where
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the bosons are Cooper pairs, there are many other systems where this effect shows up. A review covering different physical
systems can be found in Ref. [14]. We can distinguish two types of Josephson effects [15]: the so-called ‘‘external’’, where
the two states are spatially separated, like, for instance, in BEC trapped in a double-well potential [16–19], or the ‘‘internal’’,
where the two bosonic states are interpenetrated, without geometrical distinction, like, for instance, the experiments in
Refs. [7,8]. In this paper, we are mainly interested in the latter case of internal Josephson-type interactions.

Static and dynamical properties of binary bosonic mixtures in different trap geometries have been studied theoretically
by essentially using Gross–Pitaevskii equations [20–26]. Moreover, to study properties of uniform condensates, especially
those issues relatedwith fluctuations, such as symmetry restoration, reentrances, etc., quantum field theory at finite density
and temperature [27–30] is a useful technique. Related models, such as O(N) models, have also been extensively studied
by using large-N approximation and renormalization-group techniques [31,32]. These papers are mostly concentrated in
multicomponent systems which conserve the particle number of each species independently.

Motivated by these results, we decided to address the effect of Josephson-like interactions in uniform bosonic mixtures.
For simplicity, we have considered an O(2)model, perturbed with an explicit symmetry-breaking term parametrized by the
Rabi frequencyΩR and the detuning term ν. This model is analyzed inmean-field approximation plus Gaussian fluctuations.

In the absence of Josephson interactions, this model is at the onset of phase separation, since the two species are not
physically distinguishable. However, the presence of Josephson interactions changes this scenario since it explicitly breaks
O(2) symmetry. There is a temperature regime where the two atomic species uniformly condensate at the same critical
temperature Tc and their relative phase is locked by the phase of the applied electromagnetic field responsible for the Rabi
coupling and the detuning. The relative population of each condensate strongly depends on the ratio ΩR/|ν|. The main
results of this paper are shown in Figs. 3 and 4 where we depict the condensate fraction of the two species as a function
of temperature for different values of the parameter ΩR/|ν|. Thus, controlling the external laser parameters, i.e., the Rabi
coupling, the laser frequency (essentially the detuning) and the phase, it is possible to control each one of the condensate
fractions as well as its phase difference.

An important result is that, due to the original O(2) symmetry, the effective Rabi frequency, given byΩeff =


Ω2

R + |ν|2

is strongly renormalized by thermal fluctuations. On the other hand, the ratio ΩR/|ν|, that controls the bosonic mixture,
remains unaffected by quantum as well as thermal fluctuations. Thus, the ratio between both condensates are temperature
independent, allowing the possibility of control the relative condensate fractions with high accuracy.

The paper is organized as follows. In Section 2, we describe a general model for a binary mixture using quantum field
theory language. In Section 3, we concentrate on the O(2) model perturbed with Josephson interactions. In Section 4, we
present the mean-field solution, while in Section 5 we analyze the effect of fluctuations. Numerical results are presented in
Section 6 and, finally, we discuss our results in Section 7. We reserve a brief Appendix A to describe the definitions of Rabi
frequency and detuning parameter used to built our model.

2. A quantum field theory for binary bosonic mixtures

We will consider two bosonic species described by two complex fields, φ(x⃗, t) and ψ(x⃗, t). The model is defined by the
action

S =


d3xdt


Lψ + Lφ + LI


, (1)

where Lψ and Lφ are the non-relativistic quadratic Lagrangian densities

Lψ = ψ∗


i∂t +

∇
2

2m
+ µψ


ψ, (2)

Lφ = φ∗


i∂t +

∇
2

2m
+ µφ


φ. (3)

µψ and µφ are the chemical potentials for the ψ and φ species, respectively. We choose the same mass m for both species,
since we are interested in mixtures composed by a single element in two different hyperfine states.

It is convenient to parametrize the chemical potentials as

µφ = µ+ΩR (4)

µψ = µ−ΩR. (5)

The parameter µ controls the overall particle density at the time that the Rabi frequency ΩR controls the population
imbalance (see Appendix A for the microscopic physical meaning ofΩR). Throughout the paper, we have used a unit system
in which h̄ = 1.

The interaction Lagrangian density LI can be split into two terms,

LI = Lc + LJ . (6)
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