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h i g h l i g h t s

• A flux-fluctuation law of self-similar traffic is derived on Pareto ON/OFF model.
• Numerical simulations illustrate the validity of the novel law.
• The law is further demonstrated in GEANT network with actual traffic data.
• The effect of internal factor on the law is positively related to self-similarity.
• The effect of external network load on the law is determined by a single parameter.
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a b s t r a c t

The actual network traffic can show self-similar and long-range dependent features,
however, the revealed flux-fluctuation laws are only applicable to networks with short-
range dependent traffic. In this paper, we propose an improved theoretical flux-fluctuation
law of the self-similar traffic based on Pareto ON/OFF model. The proposed law shows
that (i) the greater the self-similarity is, the stronger the influence of the internal factor
is; (ii) the influence of the external factor is only determined by a single parameter
characterizing the external network load. Numerical simulations illustrate the validity
of the proposed flux-fluctuation law under diverse network scales and topologies with
various self-similarity of traffic and time windows. We also demonstrate the effectiveness
of the proposed law on the actual traffic data in the real GEANT network. As compared to
the existing laws, the flux-fluctuation law proposed in this paper can better fit the actual
variation of self-similar traffic and facilitate the detection of nodes with abnormal traffic.

© 2016 Published by Elsevier B.V.

1. Introduction 1

Traffic is an important factor affecting the performance, reliability and robustness of a network. Therefore understanding 2

the fluctuation law of traffic is meaningful to the design, control and optimization of networks [1]. In early times, 3

considerable efforts concerning traffic flow in complex networks were dedicated to the determination of bounds of network 4

conditions leading to congestion, and the fluctuation of traffic is determined by the congested traffic [2–4]. However, through 5
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the network design and control, congestion can usually be avoided. Thus, the fluctuation of traffic is not really driven by the1

congestion process but by behavior of the ‘‘normal’’ traffic. Hence it is not accurate or adequate to describe the fluctuation2

law based on the analysis of the process that turns the network from a free-flow state into a congestion state. Numerous3

efforts have been expended in studying the relationship between the mean and variance of the network traffic [5–10] to4

understand the traffic law.5

The power-law scaling is widely revealed in the degree distribution of actual networks [11,12] and used in modeling6

network structures [13,14], some researchers find that the relationship between the mean and variance of the network7

traffic also follows a power-law scaling [5–7]. Particularly, Menezes and Barabási [5,6] proposed a model to understand the8

origin of traffic fluctuations in a number of real world systems (including the Internet, the World Wide Web, and highway9

networks) and claimed a power-law scaling relationship between themean and variance of the traffic, where the power-law10

exponent can take on a finite set of discrete values, such as 0.5 or 1. Later on Duch and Arenas [7] analyzed the real traffic11

in the Abilene backbone network and found that the power-law exponent can actually assume continuous values in the12

range of [0.5, 1]. Recent studies however revealed another non-power-law type relationship between themean and variance13

of network traffic [8–10]. For example, Meloni et al. found such a non-power-law relationship between the two quantities14

based on analytical arguments and numerical results support from both simulated systems and a realistic communication15

network system [8]. The non-power-law in Ref. [8] was derived based on the assumption that the traffic arrival process to16

each node follows a Poisson distribution. With the same assumption on the Poisson arrival process to nodes, Zhou et al. [9]17

revealed the similar non-power-law for networks with average network traffic load following different distributions. These18

laws are mostly applicable to the Poisson traffic model, which is appropriate for the short-range dependent traffic.19

In 1994 Leland et al. found the self-similar feature of the Ethernet traffic [1], which shows the actual traffic exhibits cor-20

relations over a wide range of time scales (i.e., has long-range dependence). Such feature has been further proved to be the21

most important feature of network traffic [15–17]. The traditional traffic models (e.g., the Poisson traffic model [18], Au-22

toregressive moving average traffic model [19], Markov traffic model [20]), however typically involve a very limited range23

of time scales (short-range dependence in nature) and cannot reflect the self-similar feature of the actual traffic [15,21].24

Therefore the traditional traffic models are not applicable to analyzing the fluctuation law of the self-similar traffic.25

In this paper, we make new contributions by studying relationship between mean and variance of the self-similar traffic26

and address the universality of the law as being applied to general complex networks. The law is derived based on a self-27

similar traffic model called Pareto ON/OFF model and is validated using simulations under diverse network scales and28

topologies with various self-similarity of traffic and time windows. Effectiveness of the proposed law is also demonstrated29

on the actual traffic data in the real GEANT network.30

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the ON/OFF traffic model adopted31

in this work to generate self-similar traffic. The flux-fluctuation law is derived in Section 3, and influences of internal32

dynamic and external dynamic on the flux-fluctuation are discussed. To demonstrate effectiveness of the proposed flux-33

fluctuation law, numerical simulations under general network scales and topologies with various self-similarity of traffic34

and time windows are conducted in Section 4. In Section 5, we analyze the real traffic in GEANT network to further verify35

the effectiveness of the proposed law. Finally concluding remarks are provided in Section 6.36

2. ON/OFF self-similar traffic model37

Different self-similar traffic models have been proposed in literature. Examples include heavy-tailed ON/OFFmodel [16],38

wavelets model [17] and α-stable traffic model [22]. Among these models, the heavy-tailed ON/OFF model provides a39

physical explanation of the self-similar feature of traffic and has been widely used to generate self-similar traffic due to40

its mathematical simplicity.41

As detailed in Leland et al. [21], the heavy-tailed ON/OFF model regards the network similarity process as the result of42

superposition of multiple traffic flows generated from different source nodes. It assumes that the source alternates between43

an ON-period and an OFF-period. During the ON-period, packets are generated and sent from the source to the destination44

at a constant rate v, while during the OFF-period, no packets are transmitted.45

Suppose there are M identically independently distributed (i.i.d.) ON–OFF sources. To specify the distributions of46

durations of the ON-period andOFF-period, let f1(x), F1(x), F1c(x), µ, σ 2
1 denote the probability density function, cumulative47

distribution function, complementary distribution function, mean length and variance of the duration of an ON-period; and48

correspondingly we have f2(x), F2(x), F2c(x), µ, σ 2
2 characterizing the duration of OFF-period. Assume as x → ∞, either49

F1c(x) ∼ l1x−α1L1(x) with 1 < α1 < 2 or σ 2
1 < ∞50

and51

F2c(x) ∼ l2x−α2L2(x) with 1 < α2 < 2 or σ 2
2 < ∞52

where lj > 0 is a positive constant and Lj > 0 is a slowly varying function at infinity. Additionally, when 1 < αj < 2, set53

aj = ljΓ ((2 − αj)/(αj − 1)); when σ 2
j < ∞, set αj = 2, Lj ≡ 1 and aj = σ 2

j . Let t denote the time and T represent a time54

rescaling factor. Then for large values of T and M , the aggregate cumulative traffic in interval [0, Tt] behaves statistically55
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