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• New efficient algorithm to compute the optimal transportation flow.
• Source–target coupling corresponding to the flow.
• Strong mathematical formalism, linking shortest-path flow, random-walk flow and electrical current flow.
• Generalization of the randomized-shortest path with multiple sources and targets.
• Applications of the algorithm on case studies.

a r t i c l e i n f o

Article history:
Received 23 June 2015
Received in revised form 8 October 2015
Available online 12 January 2016

Keywords:
Functional minimization
Random walks
Optimal transportation problem
Multiple sources and targets

a b s t r a c t

In recent articles about graphs, differentmodels proposed a formalism to find a type of path
between two nodes, the source and the target, at crossroads between the shortest-path and
the random-walk path. These models include a freely adjustable parameter, allowing to
tune the behavior of the path toward randomized movements or direct routes. This article
presents a natural generalization of these models, namely a model with multiple sources
and targets. In this context, source nodes can be viewed as locations with a supply of a cer-
tain good (e.g. people, money, information) and target nodes as locations with a demand of
the same good. An algorithm is constructed to display the flow of goods in the network be-
tween sources and targets.With again a freely adjustable parameter, this flow can be tuned
to follow routes of minimum cost, thus displaying the flow in the context of the optimal
transportation problem or, by contrast, a random flow, known to be similar to the electrical
current flow if the random-walk is reversible. Moreover, a source–targetcoupling can be re-
trieved from this flow, offering an optimal assignment to the transportation problem. This
algorithm is described in the first part of this article and then illustrated with case studies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the years, the oldMonge–Kantorovich optimal transportation problem has continued to show its usefulness and rich-
ness for numerous applications [1–5] (and many others). When presented in a graph setting [4], this problem consists in
finding the optimal assignment of a resource supplied by a countable set of nodes, the sources, to another countable set of
nodes, the targets, while minimizing the cost U(X) of the transportation flow X . Different algorithms are capable of finding
optimal solutions while respecting constraints of source supplies and target demands [6–8]. However, none are convenient
to display routes of transportation, as it requires to solve the allocation problem first and, subsequently, run a shortest-path
algorithm for every source–target pair. In this article, a new algorithm allowing the visualization of optimal transportation
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routes is presented. This algorithm works with the well-known principle of regularization. By adding a suitable nonlinear
functional to the linear functionalU(X), the resulting functional becomes derivable and an approximation of the optimal so-
lution can be found with considerably less computing effort [9,10]. Here, this functional is named the entropy G(X), as flows
X minimizing it will display a randombehavior, and the new functional F(X) := U(X)+TG(X) is named the free energy, with
a freely adjustable parameter T > 0, the temperature. Defining this new objective functional F(X) does not only serve the
purpose of reducing computation time, but also enablesmodeling uncertainty in transportation, which can bemore realistic
than using a deterministicmodel in real-life situations.When T → 0, optimal transportation routes are displayed, but when
T → ∞, the cost minimization is negligible and the flow follows a random-walk pattern. If this random-walk is reversible,
it has been shown to be similar to the electrical current flow with sources and targets being respectively current inputs and
outputs [11,12]. A source–target coupling, i.e. an assignment of resources between sources and targets, can be retrieved from
this flow.When T → 0, this coupling gives an optimal solution to the transportation problem. To summarize, this algorithm
enables to model an array of flows, ranging from optimal transportation routes to random-walk routes, when supply and
demand on nodes are fixed, and to find a source–target coupling corresponding to these flows.

This algorithm is, in fact, a generalization of the one exposed in Refs. [13,14] and the notation is similar, even though
not entirely compatible. In the latter, and in other articles, e.g. Refs. [15–18], the randomized shortest-path computation is
limited to two nodes, whereas in the present case, multiples sources and targets are allowed.

The present article is divided in two parts. The formalism needed to construct the algorithm is exposed first, followed by
illustrations of the algorithm running on a toy graph and a real graph.

2. Formalism

2.1. Admissible flows

Let G = (V, E) be a simple oriented connected graph with |V| = n, and S, T ⊂ V , S ∩ T = ∅, respectively, the set of
sources and the set of targets. Each source generates a defined flow, which is transported on the graph before being absorbed
by targets. Let us define f = (fi) with fi > 0 ∀i ∈ S, fi = 0 ∀i ∉ S and


i fi = 1, the in-flow vector, representing the

proportion of the flow created by source nodes. Similarly, let ρ = (ρi) with ρi > 0 ∀i ∈ T , ρi = 0 ∀i ∉ T and


i ρi = 1
be the out-flow vector, representing the proportion of the flow absorbed by target nodes. All these quantities are provided
initially.

The unknown flow matrix, noted X = (xij), represents the quantity of flow on arcs (i, j), ∀i, j ∈ V . Components xij must
verify:

xij ≥ 0 positivity (1)
xi• − x•i = fi − ρi unit flow conservation. (2)

An alternative way to consider the out-flow vector is as a set of constraints on flows coming from each node to a ‘‘virtual’’
nodeω, the groundnode. Similarly, the in-flowvector canbe viewed as constraints set on flows coming fromanother ‘‘virtual’’
node φ, the generator node, to V . Formally, ∀i ∈ V:

xφi = fi xiφ = 0 (3)
xiω = ρi xωi = 0. (4)

Further in this article, the ground node must be added to the original graph in order to solve the problem.
Note that the set of admissible flows, X, that is the set of flows verifying constraints (1) and (2), is a convex set, i.e. if X and

Y are in X, so is theirmixture αX + (1 − α)Y , ∀α ∈ [0, 1].

2.2. Flow entropy and energy

LetW = (wij) be the (n×n) transitionmatrix of some irreducibleMarkov chain defined onG. A flowmatrix X will follow
the random-walk defined by W iff xij/xi• = wij for all nodes i with xi• > 0. Therefore a ‘‘random-walk’’ flow will minimize
the entropy functional:

G(X) = G(X ∥ W ) :=


i,j∈V

xij ln
xij

xi•wij
= x••


i∈V

xi•
x••

Ki(X ∥ W ) (5)

where Ki(X ∥ W ) :=


j∈V

xij
xi•

ln xij
xi•wij

≥ 0 is the Kullback–Leibler divergence between the transition distributions X and
W . This divergence is weighted by xi•/x•• to take into account the visit frequency of nodes, and the sum of flows on all arcs,
x••, is included in G(X) to transform the entropy in a homogeneous functional, that is G(νX) = νG(X) for ν > 0, reflecting
the extensivity of G(X) in the thermodynamic sense.

By contrast, flows minimizing the following energy functional:

U(X) = U(X ∥ R) :=


i,j∈V

rijxij (6)
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