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h i g h l i g h t s

• Present a new SIRS epidemic model with feedback mechanism on scale-free networks.
• Obtain and analyze the basic reproductive number and the epidemic threshold.
• Study the stability of disease-free equilibrium and the permanence of the disease.
• The feedback parameters can affect the epidemic spreading and the endemic level.
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a b s t r a c t

A SIRS epidemic model with feedback mechanism on adaptive scale-free networks is pre-
sented. Using the mean field theory the spreading dynamics of the epidemic is studied in
detail. The basic reproductive number and equilibriums are derived. Theoretical results in-
dicate that the basic reproductive number is significantly dependent on the topology of the
underlying networks. The existence of equilibriums is determined by the basic reproduc-
tive number. The global stability of disease-free equilibrium and the epidemic permanence
are proved in detail. The feedback mechanism cannot change the basic reproductive num-
ber, but it can reduce the endemic level and weaken the epidemic spreading. Numerical
simulations confirmed the analytical results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Public security and individual health are still at the risk of the outbreak of epidemic diseases even after the development
of modern medicine in recent years [1–4]. What’s worse, owing to the development of global transportation network, more
and more frequent contacts among people make the new emerging outbreak rapidly spread worldwide before adequate
supplies of vaccine could be made and distributed [5]. Therefore, the study of epidemic models is of dramatic significance,
which plays a significant role in predicting and controlling the spread of disease [6,7]. According to individuals’ disease
status, the majority of traditional epidemic models are based on a compartmentalization of individuals, which generates
two representative models: the SIS (susceptible–infected–susceptible) model and the SIR (susceptible–infected–recovered)
model. In the SIS model the infected nodes will not obtain immunity and can return to the susceptible state again after
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recovering, such as the gonorrhea and influenza, etc. In the SIR model the recovered nodes have permanent immunity
and people are never infected by that epidemic disease again, such as the measles, parotitis and SARS, etc. Early classical
representations of epidemic disease dynamics assumed that all individuals were large andmixed homogeneously such that
deterministic equations with simple frequency-dependent transmission were appropriate. Obviously these simple models
cannot completely reflect the realistic feature of the spread of diseases, which are subsequently extended in ways towards
making themmore realistic in recent years. Some such extensions are combiningwith spatial structure that the geographical
embedding could affect the topology of disease transmission network [8,9].

Another generalization of the initial simple deterministic epidemic model is to focus on the complex topology of social
interactions. As shown in the field of complex networks, the scale-free property is a fundamental discovery in social
networks [10,11]. For further understanding of the epidemic spreading dynamics in real world, the scale-free property of
social networks has been taken into account bymany epidemic models. In networks, nodes represent individual people and
edges represent the relationship of people. As for epidemic spreading dynamics, that relationship is contact to transmit the
disease. Recently, starting with the works by Pastor-Satorras and Vespignani [12,13], there has been a burst of activity on
researching the impacts of the network topology on epidemic spreading [14–26]. Refs. [14,15] studied the SIS epidemic
dynamics on scale-free networks with degree correlations. Barthélemy et al. observed that epidemic spreading follows
a precise hierarchical dynamics on scale-free networks [23]. Loecher and Kadtke studied the details of the hierarchical
propagation and achieved an unusual enhanced predictability for the order of infected nodes [24].

However, in most of the research work mentioned above, the initiative response of individual is not considered when
epidemic diseases prevail. In fact, as soon as an epidemic outbreaks, people will be more cautious and will reduce contacts
with other people consciously. Obviously, the feedback mechanism can change the contacts among people, i.e. network
topology structure. Although Refs. [25,26] proposed a SIS model with the feedback mechanism, the recovered nodes have
not been considered and the strict proof of the endemic equilibrium permanence under the feedback mechanism has not
been given. In this paper, considering the recovered nodeswe focus on a new SIRS epidemicmodelwith feedbackmechanism
on heterogeneous networks and comprehensively proved the permanence of the disease in detail.

The rest of this paper is organized as follows. In Section 2, we present a new SIRS epidemic model with feedback
mechanismon adaptive scale-free networks. In Section 3, two equilibriums are obtained at first. Thenwe analyze the globally
asymptotic stability of disease-free equilibrium and the permanence of the disease in detail. In Section 4, some numerical
simulations of the proposed model are shown. Finally, we conclude the paper in Section 5.

2. Model formulation

Oneof themost effective interventions to contain the spread of epidemic diseases is the feedbackmechanismas discussed
above. In order to investigate the efficiency of feedback mechanism policy, we consider the new SIRS model with feedback
mechanism on scale-free networks. On the scale-free networks, each individual is represented by a node of the network
and the edges are the connections between individuals along which the infection may spread. Taking into account the
heterogeneity inducedby thepresence of nodeswithdifferent connectivities, let Sk(t), Ik(t) andRk(t)be the relative densities
of susceptible, infected and recovered nodes of degree k at time t respectively. In the course of disease transmission, a
susceptible individual is infectedwith probabilityα if it connects to an infected one. The rate constant of recovery for infected
individuals is denoted by β . The rate constant of losing immunity for recovered individuals is γ . Here, we assume that the
birth rate equals the death rate, and the rate constant is l. Thus, the dynamic mean-field reaction rate equations can be
written as

dSk(t)
dt

= l − lSk(t) − αk(1 − µθ(t))θ(t)Sk(t) + γ Rk(t)

dIk(t)
dt

= αk(1 − µθ(t))θ(t)Sk(t) − βIk(t) − lIk(t)

dRk(t)
dt

= βIk(t) − γ Rk(t) − lRk(t)

(1)

where the probability θ(t) describes a link pointing to an infected individual, which satisfies

θ(t) =


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where ⟨k⟩ is the average degree within the network, P(k) is the degree distribution. I(t) =


k P(k)Ik(t) is the total density
of infected individuals in the network. Clearly, these variables obey the normalization condition:

Sk(t) + Ik(t) + Rk(t) = 1.

The initial conditions for system (1) can be given as follows

Sk(0) = 1 − Ik(0) − Rk(0) ≥ 0, Ik(0) ≥ 0, Rk(0) ≥ 0.
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