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h i g h l i g h t s

• We study the non-Arrhenius process and propose an explanation about it.
• We propose a diffusion coefficient that is proportional to the supercooled-liquid concentration.
• The proposed model allows us to explain the anomalous behavior of the diffusivity robustly.
• We demonstrate that this new approach is consistent with experimental patterns.
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a b s t r a c t

Diffusivity in supercooled liquids was observed to exhibit a non-Arrhenius behavior near
the glass-transition temperature. This process, which occurs where the activation energy
depends on the temperature, suggests the possibility of a metastable equilibrium. This
peculiar phenomenon cannot be explained using the usual Markovian stochastic models.
Based on a non-linear Fokker–Planck equation, we propose a diffusion coefficient that
is proportional to the supercooled-liquid concentration. The proposed model allows us
to explain the anomalous behavior of the diffusivity robustly. We demonstrate that this
new approach is consistent with experimental patterns. Besides, it could be applied to
non-Arrhenius chemical kinetics.

© 2016 Published by Elsevier B.V.

In the transport phenomena of many systems, such as solids and porous media, the temperature dependence of the 1

diffusion coefficient D(T ), is currently assumed to exhibit Arrhenius-like behavior, i.e., a linear relationship logD ∝ 1/T . 2

In certain systems, the linearity is not experimentally well-established. However, it can be enforced because the number 3

and accuracy of experimental data points are usually not too high, and the accessible range of the 1/T variable is small. 4

Currently, the improvement in experimental techniques to study the reaction mechanism and ionic transport has allowed 5

measurements with high accuracy in a wide range of temperatures. Thus, the systems that exhibit a non-linear relationship 6

with suchdependencewere clearly identified, such as the transport process in supercooled liquid under focus here. However, 7

the diffusion barrier or activation energy is usually assumed to be constant, and there is no well-defined model that 8

correctly characterizes these phenomena in the nonlinear Arrhenius framework. In particular, for the transport mechanism 9
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in supercooled liquid, there is increasing evidence from various recent studies on the temperature dependence of diffusivity1

processes that notice the deviations from the Arrhenius mechanism [1–7].2

According to IUPAC rules the activation energy in dynamic equilibrium is defined as Eq. (1). The activation energy is3

temperature dependent and it is also often described as Arrhenius law [8]. According to Tolman’s theorem [9], the Arrhenius4

activation energy is a phenomenological quantity defined in terms of the slope of an Arrhenius plot, i.e.,5

∂(ln(k))
∂

 1
T

 = −
Ea
kb

(1)6

where k is the rate constant, Ea is the activation energy, T is the temperature and kb is the Boltzmann constant. According7

to Eq. (1), if Ea is constant, the rate coefficient k decays exponentially with the inverse of temperature. Within the Arrhenius8

regime, there are several interpretations for the activation energy [10–18,9,19]. Tolman [9] interpreted the activation energy9

as the difference between the average energy of the molecules that reacted and the average energy of all the particles of the10

system. However, based on a diffusion model for chemical reactions, Kramers [19] interpreted the activation energy using11

stationary temperature-dependent solutions of a Fokker–Planck equation [20].We recall that a Fokker–Planck equationmay12

be derived from the Langevin equation by using standard techniques.13

In recent years, several systems were reported to significantly deviate from this law [1–7,21–23]. These approaches14

assumed a dependence between the activation energy and the temperature. Two different behaviors of the linearity15

deviation were identified in the plot ln k × 1/T [24]: a sub-Arrhenius behavior, which is associated with dominance of16

tunneling quantum effects, and a super-Arrhenius behavior, which occurswhen classical transport phenomena predominate.17

Nishiyama et al. [25] adopted a quadratic function to describe the nonlinear regimes. An alternative mathematical18

description was proposed by Aquilanti et al. [26], which had defined the rate constant in terms of the deformed exponential19

k(T ) = A

1 − d

ϵ

kbT

 1
d

(2)20

where A, ϵ and d are phenomenological parameters, and the limit d → 0 recovers the conventional Arrhenius Law. However,21

it is worth noting that although this function properly fits the experimental data, no physical interpretation was given for22

the equation.23

Recent experimentalworks [27,28] reported a non-Arrhenius-type behavior for diffusive processes in supercooled liquids24

near the glass transition temperature. In particular, using the procedure described by Smith and Kay [2], the diffusivity as25

a function of temperature provides an experimental curve that can be modeled by an exponential deformed by Aquilanti26

similar to that proposed in Eq. (2).27

Considering the existing problems on this subject, our main objective in this letter is to propose an alternative model28

based on a nonlinear equation of Fokker–Planck type for diffusive systems beyond the Arrhenius mechanism. Furthermore,29

the present study provides new insights into the deviations from linearity in many non-Arrhenius phenomena such as VTF30

and non-exponential processes. This approachwas successfully applied in a variety of physical systems such as astrophysical31

phenomena [29,30] and sunspots [31].32

According to Frank [32], for the one-dimensional frame, Fokker–Planck-like equations correspond to the following33

general formQ334

∂

∂t
C(v, t) = −

∂

∂v
[F(v, t, C)C(v, t)] +

∂2

∂v2
[D(v, t, C)C(v, t)] (3)35

where v is the random variable that characterizes the stochastic process, and C(v, t) is the probability density. The36

coefficients F(v, t, C) and D(v, t, C) are the probability density functionals, whose explicit forms depend on the dynamic37

evolution of the stochastic process to bemodeled. If Eq. (3) describes a diffusion process, C(v, t) corresponds to the diffusing38

substance concentration, and the functionals F(v, t, C) and D(v, t, C) correspond to the drag coefficients and widespread39

dissemination, respectively.40

In this context, the nonlinear functional forms that we suggest for the coefficients F(v, t, C) and D(v, t, C) correspond41

to the proposed forms in Plastino and Plastino [33] and Schwämmle et al. [34], so that,42

F(v, t, C) = −


dU
dv


Cσ−1 (4)43

and44

D(v, t, C) = Γ Cα−1 (5)45

whereU(v) is a generalized potential,Γ is a temperature-dependent parameter and the exponentsσ andα (both ≠1) define46

nonlinear processes in the dissemination and drift. Thus, for a stationary regime with regularity conditions for v → ±∞, it47

is straightforward to verify that using Eqs. (4) and (5), the solution of Eq. (3) is,48

CS(T ) = C0 [1 − (α − σ)f (T )E]
1

α−σ (6)49
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