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• Find out that subsystems can be synchronized when adding pinning control.
• Provide two interesting numerical examples.
• Establish criteria based on Lyapunov stability theory and linear matrix inequalities.
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a b s t r a c t

The purpose of this paper is to investigate the pinning synchronization analysis for
nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical
topological structure. Based on the Lyapunov stability theory, pinning control method
and linear matrix inequalities, several adaptive synchronization criteria via two kinds of
pinning control method are obtained. Two examples based on Rulkov chaotic system are
included to illustrate the effectiveness and verification of theoretical analysis.
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1. Introduction 1

Synchronization is a phenomenon which is of fundamental scientific interest in linear or nonlinear complex dynamical 2

systems. Since 1990 by Pecora and Carroll [1], chaotic synchronization has become a focal research topic. Until now, many 3

control methods have been developed including Pinning adaptive control [2–7], impulsive control [8,9] and intermittent 4

control [10–12] etc. Most of synchronization criteria are concerned with continuous-time dynamical systems with delay 5

or non-delay coupling [2–7,10,11]. But, in todays digital world, discrete-time dynamical systems are widely used because 6

of computer-based simulation and computation in many fields of science and engineering applications, such as image 7

processing, time series analysis, quadratic optimization problems, system identification and discrete analog of continuous 8

systems etc. Naturally, synchronization of discrete-time systems is also an interesting feature. In Refs. [8,9,5] the authors 9

obtained some synchronization criteria for discrete dynamical networks with non-delayed or delayed couplings under 10

impulsive control. In Refs. [13–16] the authors discussed (generalized) synchronization in discrete-time chaotic systems. 11

In Refs. [17,18] synchronization with different complex topological architectures were investigated, they found out that 12

neuronswith regular connections haveweaker synchronization than thosewith rand, small-world or scale-free networks. In Q3 13

this paper, we propose an example to illustrate that subsystems cannot be synchronized onlywith linear/nonlinear coupling 14

∗ Corresponding author.
E-mail address:mshpeng@bjtu.edu.cn (M. Peng).

http://dx.doi.org/10.1016/j.physa.2016.01.004
0378-4371/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2016.01.004
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:mshpeng@bjtu.edu.cn
http://dx.doi.org/10.1016/j.physa.2016.01.004


2 R. Cheng et al. / Physica A xx (xxxx) xxx–xxx

but they can be synchronized when pinning control is added, which also implies that synchronization criteria established1

for discrete-time chaotic systems in Refs. [13,14,16] cannot be used. By the way theoretical analysis based on the Lyapunov2

stability theory and linear matrix inequalities are also carried out. This is the main purpose of why we writing this paper.3

The rest of the paper is organized as follows: In Section 2, we propose a general discrete complex dynamical network4

model, and some preliminaries and lemmas are also given. In Section 3, we use the real-time adaptive pinning controllers,5

obtained some synchronization criteria for the general complex dynamical networks with both identical and nonidentical6

topology structure. The sufficient condition of synchronization for general complex dynamical networks via the delay7

adaptive pinning controllers are given in Section 4. Numerical examples are included in Section 5. Finally, we draw our8

conclusion in Section 6.9

2. Preliminaries and mathematical models10

Consider a generally controlled complex delayed dynamical system consisting of N nodes, with each node being of m11

dimensions, the system is described by the following equations:12

xi(t + 1) = f (xi(t)) + c1
N
j=1

aijΓ g(xj(t)) + c2
N
j=1

bijΓ g(xj(t − τ)) + ui(t) (2.1)13

where 1 ≤ i ≤ N , xi(t) = (xi1(t), . . . , xim(t))T ∈ Rm is the state variable of node i, f : Rm
→ Rm and g : Rm

→ Rm
14

are continuously differentiable functions. τ > 0 is the time delay, c1 and c2 are two parameters of coupling strengthen,15

Γ = (γij) ∈ Rm×m is an inner-coupling matrix, ui(t) is an adaptive controller. A = (aij)N×N and B = (bij)N×N represents the16

adjacency configuration of the network with the non-delay and delay couplings. If there is a link from node i to node j, then17

aij = aji > 0 (j ≠ i); otherwise, aij = aji = 0. Similarly as B. Such amodel can be described as a regular network or a random18

one by the E–R, small-world [19] or scale-free [20] network respectively. Moreover, aii = −


j≠i aij and bii = −


j≠i bij.19

Definition 1. The discrete-time dynamical networks (2.1) is said to achieve asymptotic synchronization if20

x1(t) = x2(t) = · · · xN(t) = s(t), as t → ∞,21

where s(t) ∈ Rm is a solution of an isolated node, satisfying s(t + 1) = f (s(t)).22

Define error vectors as23

ei(t) = xi(t) − s(t), 1 ≤ i ≤ N.24

To realize the network synchronization, the controllers ui should guide the error vectors ei(t) to approach zero as t goes to25

infinity, as26

lim
k→∞

∥ei(t)∥2 = 0, 1 ≤ i ≤ N.27

Let us present a lemma for later use.28

Lemma 1 ([3]). Suppose H = (hij)N×N is a real symmetric and irreducible matrix, in which hij ≥ 0 (i ≠ j) and hii = −


j≠i hij,29

nonzero matrix D = diag(d1, d2, . . . , dN) satisfies di > 0 (1 ≤ i ≤ N). Let Q = H − D, then30

(i) all the eigenvalues of Q are less than 0;31

(ii) there exists an orthogonal matrix, Φ = (φ1, φ2, . . . , φN) ∈ RN×N , such that32

Q Tφk = λkφk (k = 1, 2, . . . ,N),33

where λ1, λ2, . . . , λN are the eigenvalues of Q .34

3. Synchronization of discrete dynamical networks via real-time pinning controllers35

Choose the adaptive controllers as follows36 
ui(t) = −qΓ ei(t), 1 ≤ i ≤ l,
ui(t) = 0, otherwise, (3.1)37

where the feedback gain q > 0. Now we divide our discussion into two cases: Case 1 (A = B) and case 2 (A ≠ B).38

Case 1. Assume that the matrices A and B are identical i.e., A = B. Rewrite the dynamic system (2.1) as the followingQ439

form:40

X(t + 1) = F(X(t)) + c1G(X(t))Γ AT
+ c2G(X(t − τ))Γ AT

+ U(t), (3.2)41

where X(t) = (x1(t), x2(t), . . . , xN(t)) ∈ Rm×N , F(X(t)) = (f (x1(t)), f (x2(t)), . . . , f (xN(t))), G(X(t)) = (g(x1(t)),42

g(x2(t)), . . . , g(xN(t))), U(t) = (u1(t), u2(t), . . . , uN(t)).43
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