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h i g h l i g h t s

• Quantum information is quantified through the quantum fidelity and Shannon entropy.
• The Gaussian fidelity for three physical systems in the presence of a magnetic field is studied.
• A map between the external magnetic field and the non-commutative parameters is established.

a r t i c l e i n f o

Article history:
Received 25 August 2015
Available online 10 November 2015

Keywords:
Quantum fidelity
Wigner function
Quantum information
Shannon entropy

a b s t r a c t

Gaussian state decoherence aspects due to interacting magnetic-like and gravitational
fields are quantified through the quantum fidelity and Shannon entropy in the scope of the
phase-space representation of elementary quantum systems. For Gaussian Wigner func-
tions describing harmonic oscillator states, an interacting external field destroys the quan-
tum fidelity and introduces a quantum beating behavior. Likewise, it introduces harmonic
profiles for free particle systems. Some aspects of quantum decoherence for the quantum
harmonic oscillator and for the free particle limit are also quantified through the Shannon
entropy. For the gravitational quantumwell, the effect of amagnetic-like field on the quan-
tum fidelity is suppressed by the linear term of the gravitational potential. To conclude,
one identifies a fine formal connection of the quantum decoherence aspects discussed here
with the noncommutative quantum mechanics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Gaussian quantum correlations are in the core of the quantum information issues involving continuous variable systems.
In addition, Gaussian states are also the elementary blocks in building vacuum states, thermal states and coherent states [1],
as they play a fundamental role in quantum optics, in low dimensional physics, or even as an effective tool for describing
atomic ensembles [2]. Besides providing the necessary theoretical tools for the understanding and the manipulation of
quantum correlated systems, the representation of Gaussian states through the Wigner formalism works as bridge to the
classical dynamics. From a phenomenological point of view, Gaussian Wigner functions can be parametrically manipulated
as to describe a set of measured data [3,4] circumstantially correlated to the issues of quantum–classical transitions of a
physical system [5], for instance, as an indicator of quantum chaos [6].

The inclusion of external fields into the Hamiltonian that drives the behavior of Gaussian states may bring up typical
decoherence and dissipation with recognized phenomenological appeal. External fields acting on specific quantum systems
are frequently implemented through of quantum simulations, where a kind of controllable quantum system is used to study
another less accessible one [7]. As a typical example, the effect of a constant magnetic field on atoms has revealed the split
in the energy spectrum, in the well-known phenomenon of Zeeman effect [8].
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Given that the Wigner function in the phase-space quantum mechanics is connected with the information which can
be obtained from a quantum system, the quantum fidelity, computed through a Gaussian envelop, can encompass the
decoherence aspects of the dynamical evolution of such elementary quantum systems [9,10]. In this letter, the influence of
magnetic external fields on the quantum fidelity of two dimensional harmonic oscillators, their corresponding free particle
limit, and an extension as to include the gravitational quantumwell (GQW) dynamics, are therefore quantified through the
Gaussian Wigner formalism.

Our manuscript is organized as follows. In Section 2 the Wigner–Weyl formalism of the quantum mechanics, as well
as the way to obtain the quantum fidelity and the Shannon entropy are introduced. The Gaussian Wigner state to be
used throughout the subsequent analysis of some particular quantum systems is presented. In Section 3, one reports
about the Wigner phase-space formalism for the harmonic oscillator in the presence of an external interacting magnetic
field. The classical limit for the free particle system is obtained by setting null the natural frequency of the oscillator,
ω0 = 0. The Gaussian state fidelity and a qualitative analysis for the Shannon entropy are also evaluated. In Section 4,
the quantum fidelity and the quantum decoherence aspects for the gravitational quantum well are discussed in the phase-
space framework. A fine formal connection between external magnetic field interacting systems and the noncommutative
quantum mechanics is noticed in Section 5. Our conclusions are drawn in Section 6.

2. The Weyl–Wigner formalism of the quantummechanics, quantum fidelity, and Shannon entropy

By identifying the density matrix of a quantum system with ρ̂ = |Ψ ⟩⟨Ψ |, one can define a Wigner function through the
Weyl transform as [11,12],

W (r, p) = h−1ρW
=


ds exp [i p s/h̄] Ψ (r − s/2) Ψ ∗(r + s/2), (1)

which can be naturally generalized to a statistical mixture, such that the expectation value of an observable Ô can be
computed through

⟨O⟩ =


dr dp W (r, p) OW (r, p). (2)

The probability distributions for r and p are equivalently given by
dr W (r, p) = Φ∗(p) Φ(p) and


dp W (r, p) = Ψ (r)∗Ψ (r), (3)

such that the Wigner function can also be computed from Φ(p) through

W (r, p) =


ds exp [−i r s/h̄] Φ(p − s/2)Φ∗(p + s/2). (4)

Additional properties related to the densitymatrix theory can be obtained from the above prescription [13,14]. For instance,
theWeyl transform of an operator has intrinsic properties that allow one towrite the quantum fidelity, F , in terms ofWigner
functions. The quantum fidelity, F , is a commonly used measure to compare an input state and an output state through a
given quantum channel [1,15,16], as it works as a kind of decoherence quantifier. If F goes to unity, it means that the output
state is very similar to the input state. Likewise, if F goes to zero, the output is completely different from the input state.
Effectively, the fidelity measures the projection, varying from zero to unity, of a time-evolving state onto a departure state.

By using the Weyl transform of an operator and the property of the trace of the product of two operators, one has

Tr[ÂB̂] =


AW (r, p) BW (r, p) drdp, (5)

which can be used into the definition of the quantum fidelity [1],

F(ρ̂1, ρ̂2) =


Tr(


ρ̂1ρ̂2


ρ̂1)

2
, (6)

where ρ̂1 and ρ̂2 are two states of the quantum system. Noticing that

Tr[(ρ̂1ρ̂2)
1/2

] =


(ρW

1 ρW
2 )1/2 drdp, (7)

and using the Wigner function from Eq. (1), one obtains

Tr[(ρ̂1ρ̂2)
1/2

] =


(W1W2)

1/2 drdp, (8)
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