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• The subordinated stable CARMA process is examined.
• As a subordinator the stable process is considered.
• The codifference is considered as a measure of dependence of given process.
• The estimation and simulation procedures are presented.
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a b s t r a c t

In this paper we examine the continuous-time autoregressive moving average process
driven by α-stable Lévymotion delayed by inverse stable subordinator. This process can be
applied to high-frequency data with visible jumps and so-called ‘‘trapping-events’’. Those
properties are often visible in financial time series but also in amorphous semiconductors,
technical data describing the rotational speed of a machine working under various load
regimes or data related to indoor air quality. We concentrate on the main characteristics
of the examined subordinated process expressed in the language of the measures of
dependence which are main tools used in statistical investigation of real data. However,
because the analyzed system is based on the α-stable distribution therefore we cannot
consider here the correlation (or covariance) as a main measure which indicates at the
dependence inside the process. In the paper we examine the codifference, the more
general measure of dependence defined for wide class of processes. Moreover we present
the simulation procedure of the considered system and indicate how to estimate its
parameters. The theoretical results we illustrate by the simulated data analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the real data analysis the selection of appropriate model suitable to examined signal is the most important issue.
The one of the easiest ways to find a proper model, constructed on the stochastic properties of examined data, is based
on the assumption that the vector of observations contains realizations of independent random variables with the same
distribution. However, in most time series the structure of dependence is more complicated and we observe strong
dependence between examined data. Therefore there is need to analyze more sophisticated models in order to cover all
properties of the signal. One of the simplest system which takes under consideration the dependence inside the examined
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process is the discrete-time autoregressive moving average (ARMA) time series [1]. This model has a simple structure
therefore it can be used not only in the theoretical analysis, it also captures many interesting features of real data from
different fields. Moreover in the recent years there were introduced many extensions of the classical version of ARMA
model. We only mention here few of them, like introduction of time-dependent parameters instead of the constant ones or
application of noise which has heavier-tail than in the Gaussian case (i.e. α-stable distribution) [2–5].

For many real data it is more adequate to specify model in continuous time rather than in discrete time [6]. The
continuous-time systems seem to be the most natural for example for modeling high frequency data, like in finance.
Moreover they are also more appropriate for irregularly spaced data or in case of missing observations. Therefore in recent
years the continuous-timemodels have becomemore popular. One of the famous examples of continuous-timemodels is the
Ornstein–Uhlenbeck process thatwas originally introduced byUhlenbeck andOrnstein [7] as a propermodel for the velocity
process in the Brownian diffusion. In other words, this process provides a stationary solution for the classical Klein–Kramers
dynamics, see Ref. [8] and reference therein. First of all the Ornstein–Uhlenbeck process has been used in applications to
financial data such as interest rates, currency exchange rates, and commodity prices [8,9], but there are known another
applications, for instance in physics where this systemwas a prototype of a noisy relaxation process. It is worthmentioning,
the Ornstein–Uhlenbeck process is known in finance as the Vasiček model [10].

However, the classical Ornstein–Uhlenbeck process is only a special case of the continuous-time ARMA model, called
CARMA system with Gaussian structure. The CARMA model is the solution of a higher order system of stochastic linear
differential equations, which can be seen as linearly filtering of the random input. The discrete version of CARMA process is
a discrete-time ARMA time series therefore there is a variety of its possible applications. In the last years the classical CARMA
models based on the Brownian diffusion were analyzed in different aspects. We only mention some of them, like problem
estimation for continuous-time moving average processes [11,12], limit behavior of periodogram of CARMA systems [13]
or theory for multivariate CARMA models [14]. Similar as in the discrete-time case there are also considered extensions
of the classical CARMA systems. In the literature the most popular extension is based on the replacement of the Brownian
motion in the classical definition of CARMAmodel by themore general class of processes, namely belonging to the infinitely
divisible class of distributions with particular attention on the α-stable Lévy motion [15–17]. It is worth mentioning, the
CARMA models with α-stable distribution can be successfully applied for example to high-frequency data with observed
jumps [18].

Unfortunately, in many cases models like continuous-time ARMA (even with different than Gaussian structure) are not
sufficient to description of real data, especially with observable, so called ‘‘trapping events’’. By ‘‘trapping events’’ we mean
visible in the data time periods where the process stays on the same level. This effect we observe for example in financial
data, especially interest rate data quoted for developing countries where the market conditions do not change so fast [8]
but also for technical data describing rotational speed of the machine. Detection and parametrization of such events might
help to improve efficiency of machine usage, for example to minimize number of segments and their duration for machine
operation under idle mode or overloadmode [19]. This special behavior can be also seen in the data related to the indoor air
quality [20–22]. One of themodel that can be used in this context is the co-called subordinated process inwhich the ‘‘normal’’
time is replaced by the another non-negative non-decreasing process, called subordinator. In the abovementioned examples
such subordinator is constructed as an inverse process to another strictly increasing Lévy subordinator. More precisely,
the mentioned subordinated process is a superposition of two independent systems, one — called the external or parent
process and the second — called the operational time (or internal process) and given by the inverse subordinator. There are
many examples of such construction. Let us mention for example the arithmetic Brownian motion with inverse tempered
stable subordinator [21] or Brownian motion with inverse α-stable, tempered stable or Gamma subordinators [23]. The
subordinated processes, among others, are examples of anomalous diffusion models and there are known connections
between them and the fractional Fokker–Planck type equations [24,25]. More precisely, the probability density function
of the subordinated processes is described by the fractional Fokker–Planck type equation that depends on the external
process and distribution of the subordinator. For interesting examples see Refs. [26–29]. We should mention here that one
of the most popular process used as the subordinator applied for different application is the α-stable one [8] however in
the literature one can find the analysis of different systems that can be used as the internal processes in the construction of
subordinated models, see for example Ref. [23].

It is worth to stress that processes delayed by inverse subordinators are continuously considered in physics since the
pioneering work of Scher andMontroll [30]. In the last decade they become very popular especially from the practical point
of view therefore there was a need to consider their properties that may be useful in the statistical investigation of real
data. One of the characteristic that may help to fit a proper model to real data is the structure of dependence. The most
popular measure of dependence is correlation (or covariance). By comparing the empirical counterparts of autocorrelation
(or autocovariance) calculated for real data with the theoretical one for given theoretical model we can answer the question
if the model is well fitted to examined vector of observations [31]. However, for the stochastic processes with heavy-
tailed distributions for which the variance diverges, these tools are inadequate. Therefore there is need to consider another
measures of dependencemore adequate for analyzed processes. One of themeasure that can be applied to variety of systems
is the codifference [32] which is based on the characteristic function of examined process. Moreover, the codifference
in the Gaussian case reduces to the classical covariance, so it can be treated as the natural extension of the well-known
measure. On the other hand, according to the definition, it is easy to evaluate the empirical codifference which is based on
the empirical characteristic function of the analyzed data. It is worth tomention that the codifference is closely related to the
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