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HIGHLIGHTS

e Our goal is to determine classes of traveling solitary wave solutions for Lattice Boltzmann schemes by means of a hyperbolic ansatz.
e Such lattice solitary waves are not solutions of the exact continuous original equation.

e The occurrence of such spurious solitary waves might cause structural instability of the scheme.

e The existence of spurious numerical lattice solitary waves for Lattice Boltzmann schemes is eventually proved.
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rence of such a spurious solitary wave, which exhibits a very long life time, results in a
non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a
behavior is referred here to have a structural instability of the scheme, since the space of so-
lutions spanned by the numerical scheme encompasses types of solutions (solitary waves
in the present case) that are not solutions of the original continuous equations. This paper
extends our previous work about classical schemes to Lattice Boltzmann schemes (David
and Sagaut 2011; 2009a,b; David et al. 2007).
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1. Introduction

The lattice Boltzmann method (LBM) is used for the numerical simulation of physical phenomena, and serves as an
alternative to classical solvers of partial differential equations. The primary domain of application is fluid dynamics; it is
specially used to obtain the numerical solution of the incompressible, time-dependent Navier-Stokes equation.

The strength of the Lattice Boltzmann method is due to its ability to easily represent complex physical phenomena,
ranging from multiphase flows to fluids with chemical reactions. The principle is to “mimic” at a discrete level the dynamics
of the Boltzmann equation. Since it is based on a molecular description of a fluid, the knowledge of the microscopic physics
can directly be used to formulate the best fitted numerical model.

This method can be regarded as either an extension of the lattice gas automaton (LGA) [ 1-3], or a special discrete form of
the Boltzmann equation from kinetic theory. Although the connection between the gas kinetic theory and hydrodynamics
has long been established, the Lattice Boltzmann method (LBM) needs additional special discretization of velocity space to
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recover the correct hydrodynamics. Due to the very same reason, the LBM works exactly opposite traditional CFD methods in
deriving working schemes: LBM uses Navier-Stokes equations as its target while traditional CFD methods use Navier-Stokes
equations as their starting point.

Until a few years, the LBM was applicable to the isothermal flow regime, i.e., the weakly compressible, low-Mach-number
limit. This flow regime is traditionally treated as “incompressible”, although there are CFD methods constructed to compute
the Navier-Stokes equations in this regime. The argument for treating very low-Mach-number flows as incompressible
is pragmatic rather than physical. The direct calculation of the isothermal Navier-Stokes equations requires time steps
sufficiently small to resolve acoustic waves across a computational cell. This time step may be vastly smaller than the time
scales of interest for the bulk fluid motion. Thus the computational cost of the many additional time steps required by an
isothermal calculation may be vastly higher than the cost of an incompressible calculation. Of course, in reality there is
no fluid or flow that is absolutely incompressible (i.e., with infinite acoustic velocity). Recent works have shown that it is
possible to define lattices able to overcome this limitation (see, for instance, Ref. [4], where the authors lay the theoretical
foundation of the lattice Boltzmann model for the simulation of flows with shock waves and contact discontinuities, also
Ref. [5], where one can find a powerful scheme the computational convergence rate of which can be improved compared to
classical previous ones, while proving to be efficient for Taylor vortex flow, Couette flow, Riemann problem).

As for the enhancement of stability, which used to be pointed out in most lattice Boltzmann models, the regularization
technique has been successfully shown as an efficient method of stabilization of the Single-Relaxation-Time (SRTLB) (see
Ref. [6], where the model proposed by the authors enables one to raise significantly the maximum Reynolds number that
could be simulated at a given level of grid resolution, in two and three dimensions).

2. The lattice Boltzmann method

The lattice Boltzmann (LB) method follows the same idea as its predecessor the Lattice Gas Automata (LGA) when it also
considers the fluid on a lattice with space and time discrete. Instead of directly describing the fluid by discrete particles
and, thus Boolean variables, it describes the fictitious system in terms of the probabilities of presence of the fluid particles.
A lattice Boltzmann numerical model simulates the time and space evolution of kinetic quantities, the particle distribution
functions f;(7, t),0 <j <J,J] € N*.

The lattice Boltzmann equation is obtained by ensemble averaging the equation

(N (F+ AT e+ Ag) = (N (7, 0)) + (2 (V) (M

where (M (F, t)) denotes the average number of particles at space position 7 and time t.

The system is supposed to satisfy the Boltzmann molecular chaos hypothesis, i.e. the fact that there is no correlation between
particles entering a collision. Thus, the collision operator can be expressed as (§2; (N)) = £2;(N), which leads to the Lattice
Boltzmann equation:

S (r+ Aty 6+ At) = [ (r, ) + 2 () .

where, forj € N, f; = (N;) denotes the probability to have a fictitious fluid particle of velocity v; entering lattice site 7 at
time t. The f; are also called the fluid fields, or the particle distribution functions.

The collision operator is normally a non-linear expression and requires a lot of computation time [7]. In a big lattice,
e.g. 3D model, the computation becomes impossible even on a massively parallel computer. To overcome this problem,
Higuera et al. [8,9] proposed to linearize the collision operator around its local equilibrium solution to reduce the complexity
of the operation. Using this idea, Bhatnagar, Gross and Krook introduced the BGK lattice (LBGK) [10], in which the collision
between particles is described in terms of the relaxation towards a local equilibrium distribution. The LBGK is considered
to be one of the simplest forms of the Lattice Boltzmann equation and is mathematically expressed as
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where 7 is the single relaxation time, which is a free parameter of the model to determine the fluid viscosity, and j?eq,

jO, ..., J, denote the local equilibrium functions, which are functions of the density and the flow velocity 1.

In the lattice Boltzmann method, the space variable vector T is supposed to live in a lattice £ included in an Euclidian space
of dimensiond, d > 1.

The velocity belongs to a finite set V composed by given velocities Ej,j € {0,...,J},] € N*, chosen in such a way that

reLandg e V=>7+AtgeL (4)

where At denotes the time step.
The set of velocities 'V is supposed to be invariant by space reflection, i.e.:

EjGViE”E’VZE]:—_éjE'V. (5)

The numerical scheme is thus defined through the evolution of the population f;(7, t), with 7 € £ andj € {0, ..., ]} towards
a distributionfj(F, t + At) at a new discrete time.
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