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h i g h l i g h t s

• Configurational entropy spectral analysis is developed with spectral power as a random variable.
• The proposed spectral analysis yields Burg’s maximum entropy spectral analysis.
• The maximum entropy spectral analysis encompasses the Burg entropy spectral analysis and two configurational entropy spectral

analyses.
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a b s t r a c t

Configurational entropy spectral analysis (CESAS) is developed with spectral power as
a random variable for streamflow forecasting. It is found that the CESAS derived by
maximizing the configurational entropy yields the same solution as by the Burg entropy
spectral analysis (BESA). Comparison of forecasted streamflows by CESAS and BESA shows
less than 0.001% difference between the two analyses and thus the two entropy spectral
analyses are concluded to be identical. Thus, the Burg entropy spectral analysis and two
configurational entropy spectral analyses form the maximum entropy spectral analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The entropy theory comprising the Shannon [1] entropy and the principle of maximum entropy (POME) [2,3] has been
widely applied in hydrology [4–8]. The advantage of using the entropy theory is that it combines statistical information
with physical characteristics and provides least-biased estimation. However, it was not used for forecasting until Burg [9,10]
developed the maximum entropy spectral analysis (MESA) which is called the Burg entropy spectral analysis (BESA). The
Burg entropy is defined in terms of frequency f as a random variable:

HB(p) =

 W

−W
ln[p(f )]df (1)

where frequency f is considered as a random variable, W is the Nyquist frequency, and p(f ) is the normalized spectral
density taken as the probability density function (PDF) of f .
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For a stationary randomprocess BESA computes spectral power from the autocorrelation of given lags, without assuming
autocorrelation of unknown lags as zero [11]. It has an advantage over classical method in terms of computational ease,
short and smooth spectra with a high degree of resolution, and robustness of estimates and their stability. As a result, BESA
has been widely applied to spectral analysis of geomagnetic fields, climate indices, surface air temperature, geophysical
exploration, tide levels, precipitation, and runoff [12–21]. BESAhas also been employed for long-termstreamflow forecasting
and real-time flood forecasting [22–25,6,7] and has been shown to have an advantage in long-term streamflow forecasting
over traditional stochastic methods, but has not been found to be superior for short-term flow forecasting.

Themaximum entropy spectral analysis can be derived using the configurational entropy introduced by Frieden [26] and
Gull and Daniell [27], which is defined as

HCF (f ) = −

 W

−W
p(f ) ln[p(f )]df . (2)

It is noted from Eq. (2) that the configurational entropy is defined in the same form as the Shannon entropy. The
configurational entropy spectral analysis with frequency as a random variable (CESAF) is shown to be preferred over BESA
for autoregressive moving average (ARMA) and moving average (MA) processes [28]. CESAF has been applied to monthly
streamflow forecasting, and has been found to perform better than BESA [29].

On the other hand, configurational entropy spectral analysis can be derivedwith spectral power as a randomvariable (CE-
SAS). The streamflow time series yt , t = 1, 2, . . . , T can be transferred to spectral powers xk, k = 1, . . . , n, in the frequency
domain by the Fast Fourier transform. For each frequency fk there is one associated spectral power xk. Let x⃗ = (x1, x2, . . . , xn)
and let it be assumed that each probability density function p (xk) is considered independent identically distributed. Then
the joint probability density function can be noted as p(x⃗) = p(x1) · · · p(xn). Now assuming each spectral power xk as a
random variable, the configurational entropy is defined as

HCS(p) = −


D
p(x⃗) ln[p(x⃗)]dx⃗ = −E{ln[p(x⃗)]}. (3)

However, it was shown by Gray [30] that if xk came from anN-dimensional Gaussian distribution, then the joint distribution
can be given by

p(x⃗) =


1
2π

 n
2


1
detℜ

 1
2

exp


−
1
2
x⃗tℜ−1x⃗


(4)

where det ℜ is the determinant of the autocorrelation matrix defined by

ℜ = E[Y TY ] =


ρ0 ρ1 · · · ρn−1 ρn
ρ1 ρ0 · · · ρn−2 ρn−1
...

...
ρn−1 ρn−2 · · · ρ0 ρ1
ρn ρn−1 · · · ρ1 ρ0

 (5)

where ρn is the autocorrelation of the nth lag. [Define matrix Y .] Substitution of Eq. (4) into Eq. (3) yields

HCS(p) = ln[(2πe)
N
2 (detℜ)

1
2 ]. (6)

It is noted that the autocorrelation is linked to the spectral density. Thus, replacing the autocorrelation in Eq. (6)with spectral
density, the result is [give the intermediate steps] H(f ) =

 W
−W ln [p(f )] df , which is the Burg entropy.

The objective of this paper therefore is to derive the configurational entropy spectral analysis with spectral power as a
random variable, and to show how it yields Burg entropy spectral analysis.

2. Review of Burg entropy spectral analysis

Using the principle of maximum entropy, Burg [9,10] developed BESA for a stationary random process, which provides
a basis to connect the spectra with the autoregressive (AR) process. By maximizing the Burg entropy in Eq. (1) with the use
of the method of Lagrange multipliers, he obtained the spectral density as

P(f ) =
1

N
n=−N

λne−i2π fn1t

(7)
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