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h i g h l i g h t s

• Different Renyi entropies lead to contradicting uncertainty relations.
• Contradicting uncertainties are explained as lack of majorization of statistics.
• The comparison between joint and product distributions depends on purity.
• Most popular measures of complementarity are blind this these features.
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a b s t r a c t

We compute Rényi entropies for the statistics of a noisy simultaneous observation of two
complementary observables in two-dimensional quantum systems. The relative amount of
uncertainty between two states depends on the uncertainty measure used. These results
are not reproduced by a more standard duality relation. We show that these behaviors are
consistent with the lack of majorization relation between the corresponding statistics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Historically, the joint uncertainty of pairs of observables has beenmostly addressed in terms of the product of their vari-
ances. Nevertheless, there are situations where such formulation is not satisfactory enough [1], thus alternative approaches
have been proposed, mainly in terms of diverse entropic measures [2–5] (see also the reviews in Ref. [6]). In this work we
consider in particular the so-called Rényi entropies [7] and the corresponding entropic uncertainty relations, for the statistics
associated to two complementary observables [8]. There has been an increasing activity to obtain different and improved en-
tropic uncertainty relations not only for foundational reasons but also for the different applications in quantum information
problems (a non-exhaustive list includes information-theoretic formulation of error–disturbance relations [9], connection
with duality relations [10] and nonlocality [11], entanglement detection [12], EPR-steering inequalities [13], quantummem-
ory [14], and security of quantum cryptography protocols [15]). Also, entropic uncertainty relations have a deep connection
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with the majorization of statistical distributions [16,17], which has been already applied to examine uncertainty of thermal
states [18] (this is closely related to the idea of mixing character [19]).

However, previous works [4,8] have shown that entropic uncertainty relations may lead to unexpected results, derived
from the fact that the amount of uncertainty for a pair of observables depends on the uncertaintymeasure used. This is quite
natural; actually, one of the benefits of using entropic measures is that they adapt to assess different operational tasks. Nev-
ertheless, onemay find it surprising that differentmeasures lead to opposite conclusions in entropic relations: this is, that the
states of maximum uncertainty for one measure are the minimum uncertainty states for the other measure, and vice versa.

In this regard, the aim of this work is twofold. On the one hand, we show that these unexpected behaviors are fully com-
patible with the lack of majorization relation between the corresponding statistics. This connection holds because entropic
measures are monotone with respect to majorization. Thus, such surprising entropic results are not tricky features of en-
tropic measures, but may have a deeper meaning that is actually overlooked by more popular measures of uncertainty or
complementarity. On the other hand, we extend the application of entropicmeasures to the statistics of a simultaneous joint
observation of two complementary observables in the same system realization [20–22]. This setting of complementarity in
practice provides a rich arena to examine the interplay between entropic measures and majorization. The simultaneous
measurement provides a true joint classical-like probability distribution that enables alternative assessments of joint un-
certainty, different from the ones given by the product of individual statistics, either intrinsic or of operational origin.

For simplicity we address these issues in the simplest quantum system described by a state in a two-dimensional
Hilbert space. This comprises very relevant practical situations such as the path–interference complementarity in two-beam
interference experiments. This allows us to contrast the performance of entropic measures with respect to more standard
descriptions of complementarity [23–25].

The paper is organized as follows: in Section 2 we introduce the discussion on statistics of simultaneous measurements
for spin 1/2 observables. Section 3 exhibits noticeable results for entropic quantities, and an explanation for that behavior is
given in Section 4. In Section 5, a duality relation for complementarity is analyzed and compared with the entropic results.
Finally, some concluding remarks are outlined in Section 6.

2. Statistics and simultaneous measurements

Let us consider two complementary observables represented by the Pauli spin matrices σx and σz . In practical terms
they may represent phase and path, respectively, in two-beam interference experiments. The system state is described by
a density matrix operator acting on the Hilbert space HS that in Bloch representation acquires the form ρ =

1
2 (I + s · σ),

where I is the identity matrix, σ represents the three Pauli matrices, and s = Tr(ρ σ) is a three-dimensional Bloch vector
with |s| ≤ 1. The modulus |s| expresses the degree of purity of the state as Tr(ρ2) =

1
2 (1 + |s|2), being |s| = 1 in the case

of a pure state. We make use of the Bloch-sphere parametrization:

sx = |s| sin θ cosϕ, sy = |s| sin θ sinϕ, sz = |s| cos θ. (1)

The intrinsic statistics for the observables σx and σz are

pXj =
1
2

(1 + j sx) and pZk =
1
2

(1 + k sz) , (2)

with j = ±1 and k = ±1.
The simultaneous measurement of noncommuting observables requires involving auxiliary degrees of freedom, usually

referred to as apparatus. In our case we consider an apparatus described by a two-dimensional Hilbert space HA.
The measurement performed in HA addresses that of σz , while σx is measured directly on the system space HS . The
system–apparatus coupling transferring information about σz from the system to the apparatus is arranged via the following
unitary transformation acting on HS ⊗ HA,

U = |+⟩ ⟨+| ⊗ U+ + |−⟩ ⟨−| ⊗ U−, (3)

where U± are unitary operators acting solely on HA, while |±⟩ are the eigenstates of σz with corresponding eigenvalues
±1. For simplicity the initial state of the apparatus, |a⟩ ∈ HA, is assumed to be pure, so that the system–apparatus coupling
leads to

U|+⟩ |a⟩ → |+⟩ |a+⟩, U|−⟩ |a⟩ → |−⟩ |a−⟩, (4)

where the states |a±⟩ = U±|a⟩ ∈ HA are not orthogonal in general, with cos δ = ⟨a+|a−⟩ assumed to be a positive real
number with 0 ≤ δ ≤ π/2, without loss of generality. The measurement in HA introducing minimum additional noise is
given by projection on the orthogonal vectors |b±⟩ (see Fig. 1):
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