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h i g h l i g h t s

• This study proposes a revised lattice Boltzmann model with traffic pressure.
• Establishing approach of traffic flow equilibrium velocity distribution is given.
• The expression of traffic pressure is put forward.
• Macroscopic dynamic characteristics of the new model are investigated.
• The effect of equilibrium traffic pressure on traffic flow stability are studied.
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a b s t r a c t

A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed
in this study to tackle the phase transition phenomena of traffic flow system. The traditional
lattice Boltzmannmodel has limitation to investigate the complex traffic phase transitions
due to its difficulty for modeling the equilibrium velocity distribution. Concerning this
drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium
velocity distribution in the revised lattice Boltzmann model. In the proposed model,
a three-dimensional velocity-space is assumed to determine the equilibrium velocity
distribution functions and an alternative, new derivative approach is introduced to deduct
the macroscopic equations with the first-order accuracy level from the lattice Boltzmann
model. Based on the linear stability theory, the stability conditions of the corresponding
macroscopic equations can be obtained. The outputs indicate that the stability curve is
divided into three regions, i.e., the stable region, the neutral stability region, and the
unstable region. In the stable region, small disturbance appears in the initial uniform flow
and will vanish after long term evolution, while in the unstable region, the disturbance
will be enlarged and finally leads to the traffic system entering the congested state. In
the neutral stability region, small disturbance does not vanish with time and maintains
its amplitude in the traffic system. Conclusively, the stability of traffic system is found to
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be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of
the proposed model are found to be consistent with the recognized, theoretical results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traffic flow system presents significant impact on social economic and urban environment [1,2]. In the past decades,
many traffic flow models have been developed to reproduce all kinds of traffic jam phenomena, but no perfect model
achieved yet [3].

The system of traffic is open and giant complex, the modeling thought based on lattices present certain advantages
for its convenience, such as lattice hydrodynamic models [4,5] in macroscopic level and cellular automaton models in
microscopic level [6,7]. For example, introducing revolutionary games [8,9] to cellular automaton Biham–Middleton–Levine
(BML)model [7] results in a premature occurrence of traffic jams and thus unnecessarily burdens the transportation system.

In this paper, the study focus on the lattice Boltzmann traffic model, which is one of kinetic-type models in mesoscopic
level. The drawbacks of the kinetic-typemodels are identified [10]. Despite the presumed assumptions such as vehicle chaos
assumption, there are still number of unknown parameters and empirical relations need to be estimated via observations.
Furthermore, themathematically integral–differential-type equations are usually difficult to be solvedwith either numerical
methods or analytical methods.

Meng et al. [10] introduced the Bhatnagar–Gross–Krook-type approximation to Boltzmann equation and proposed a
lattice Boltzmann model to study traffic phenomena. The model can simulate traffic flow efficiently and provide certain
meaningful results explaining the physical phenomenon. However, seeking relevant equilibrium velocity distribution
function is still a challenging task as no momentum and energy conservations exists in traffic flow. Hence, in this study,
a revised lattice Boltzmann model, considering the traffic pressure and the velocity–density relation, is proposed.

2. Model development

2.1. Lattice Boltzmann model

The governing equation of lattice Boltzmann model for traffic flow, proposed by Meng et al. [10], is given as below:

fi (x + viδt , t + δt) − fi (x, t) = ω

f eqi (x, t) − fi (x, t)


(1)

where fi (x, t) is the phase-space density, it denotes the distribution of vehiclesmovingwith velocity vi at location x and time
t . f eqi is the equilibrium phase-space density, namely, the distribution of vehicles under the local equilibrium state, which
describes the local equilibrium state resulting from the competition between two opposite sides in a local region, i.e., the
drivers’ effort toward their desired speeds and the interactions with other vehicles, namely, the equilibrium phase-space
density. ω the dimensionless relaxation factor, ω ≡ δt/τ , δt a small time clearance, and τ the relaxation time. Similar to
fluid and granular media, it is known that the phase-space density also depends on their gradients, which is a consequence
of the finite adaptation time required to reach local equilibrium.

In hydrodynamics, one can derive the appropriate equilibrium distribution function f eqi according to the discretization
method of phase space. But such function usually contains certain unknown coefficients, which need to be determined based
on the conservation laws of fluid mechanics. However, there is no such conservation principle in traffic flow system, which
causes dilemma in most traffic studies. Fortunately, it is possible to determine f eqi through the empirical observation under
certain assumptions, similar to the velocity–density relation in the Lighthill–Whitham–Richards macroscopic model [11]
for closing the mathematical formation.

By empirical and/or field measurements, the velocity distributions of traffic flow with a small fraction of trucks follow
the Gaussian distribution [12,13]. However, if the sampling intervals are too large, the bimodal distributionmay be observed
[14,15], which reflect the transition from free to congested traffic. Helbing [3] summarized some empirical data from the
literature [12–17] and stated that vehicle velocities aremore or less Gaussian distributed. Hence, establishing proper velocity
distribution function plays a key role in traffic flowmodeling. A specific equilibriumphase-space density function [5] is given
as follows,

f eq = ρ exp

−

v − Veq

2
/

2θeq


/

2πθeq

1/2 (2)

where Veq is the equilibrium average velocity, θeq is the equilibrium velocity variance, and θeq = A (ρ) V 2
eq, A (ρ) is the

density-dependent variance prefactor, its empirical formproposed by Shvetsov andHelbing [18] is complicated. It is difficult
to extend these functions to more complex traffic cases or numerical simulation.
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