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HIGHLIGHTS

e We study a simple model of “mean field game”.

e We provide an exact solution of the associated system of coupled differential equations.

e We analyze the resulting self-consistent equation in various limiting regimes, resulting in the construction of a “phase diagram” of the
considered mean field game.
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article we study in detail a particular example called the “seminar problem” introduced by

Keywords: 0. Guéant, J-M. Lasry, and P-L. Lions in 2010. This model contains the main ingredients of

Mean field games any mean field game but has the particular feature that all agents are coupled only through

a simple random event (the seminar starting time) that they all contribute to form. In the
mean field limit, this event becomes deterministic and its value can be fixed through a self
consistent procedure. This allows for a rather thorough understanding of the solutions of
the problem, through both exact results and a detailed analysis of various limiting regimes.
For a sensible class of initial configurations, distinct behaviors can be associated to different
domains in the parameter space. For this reason, the “seminar problem” appears to be an
interesting toy model on which both intuition and technical approaches can be tested as a
preliminary study toward more complex mean field game models.
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1. Introduction

Many problems in different fields deal with a situation where many identical and interacting agents try to minimize a
cost through the choice of a strategy. One can think of economic agents trying to maximize their profits, of people in a crowd
trying to minimize their discomfort or to particles in a fluid “trying” to minimize their energy.

A general framework making possible to model a large class of such problems has been introduced in 2006 by Lasry and
Lions [1,2] and Huang et al. [3] under the general terminology of “mean field game theory”. Largely inspired by statistical
physics, this approach addresses the limit where the agents face a continuum of choices (states) in which they can evolve
only locally, and the number of agents is large enough that self averaging processes are at work. This approach leads to a
system of partial differential equations coupling the density of players and the optimization part of the problem.
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Mean field game theory has been intensively studied in the past few years, and in spite of its relative youth, a very
large number of results have been obtained in the mathematical [4-8] and socio-economic communities [9-13]. A recent
overview is given by Gomes and Satide in Ref. [ 14]. Most of the focus however has been put either on the conditions required
to prove rigorously the existence and unicity of the solutions of the equations of mean field game theory [8], or on the study
of particular models based primarily on numerical treatments [7]. A more “qualitative” understanding of the behavior of
the solutions, based on the identification of the relevant time and length scales, and on the analytical study of the solution
in various limiting regime, has received significantly less attention.

Our goal in this paper is to perform this program for a simple model, introduced by Guéant et al. in 2010 [15], called the
seminar problem to be described in more details below. The essential point here is that this “mean field game model” is in
some sense very close to the everyday “physicists’ mean field” since all agents are interacting only through a very simple
“field” which is actually a simple number, the time T at which the seminar actually starts. This particular feature allows for
an analytical approach, similar in spirit to the physicists’ one: For fixed T, the behavior of each agent becomes independent
on the other, making the associated problem to be solvable to a large extent; then, for a given distribution of agents, the
actual value of T can be evaluated by a self-consistency procedure. The main interest in this model is to provide a fully
understandable toy model on which one can develop its own intuition and tools before tackling the full complexity of mean
field game models.

The paper is organized as follows: In Section 2 we introduce the seminar problem in detail and show that its resolution
involves two essentially independent parts: a system of coupled (Hamilton-Jacobi-Bellman and Kolmogorov) differential
equations on one hand, and a self-consistency problem on the other. Sections 3 and 4 address the Hamilton-Jacobi-Bellman
and Kolmogorov equations, respectively. Various limiting regimes are studied in detail for both. Moreover, we show that an
exact solution to these coupled differential equations can actually be given in a closed form. The self-consistency condition
determining the effective beginning of the seminar T is discussed in Section 5, eventually leading to the construction of
a “phase diagram” for this toy model. Concluding remarks are gathered in Section 6. The paper is completed by three
Appendices where technical computations are shown.

2. The seminar problem

The model

Consider a corridor at the end of which is a seminar room. A seminar is planned at time t but people know that in practice,
it will only begin when a large enough proportion of the lab members 6 (known), will be seated.

The members of the laboratory thus move according to the following considerations: They do not want to arrive too
early in the seminar room because they do not particularly enjoy waiting idly as the room fills. On the other hand they are
aware that the lab director and the seminar organizers will already be in the room at time t, and will frown upon late comers.
Furthermore they really want to understand the content of the seminar and are concerned that missing the actual beginning
might not help in this respect.

For every agent, this is summarized by the following cost function associated with the arrival time ¢:

c(t) = alt — tly + Blt — Tly + [T — tl4, (1
where T is the effective beginning time of the seminar. In Eq. (1), «, 8 and y are positive real numbers and respectively
quantify the sensitivity to social pressure, the desire not to miss the beginning of the seminar, and the reluctance to useless
waiting. We assume these parameters to be the same for all members of the laboratory. We also assume (y < «) so that
the cost c(t) is actually minimal for the official starting time ¢.

The corridor is represented by the negative half-line line ]—o0, 0], and the seminar room is located at x = 0. At time
t = 0, people leave their office to go to the seminar. Each member of the laboratory i = 1...N, controls her drift a;(t)
toward the seminar room but is subject to random perturbations (stopping to discuss with somebody, going back to take
a pen and then giving up the idea, or speeding up to catch up a friend for example), modeled by a Gaussian white noise of
variance o'2. A given participant thus moves according to a noisy dynamics:

dX; = a;(t) dt + odWi;(t) (2)
where,

X;i(t) is the agent position at time ¢,

a;(t) is her drift at the same time,

dW;(t) is a normal white noise.

Again, except for their initial positions, all agents have the same characteristics.

In addition to the cost c(t) associated to the arrival time (Eq. (1)), agents dislike having to rush on their way to the
seminar room and the total cost function therefore includes a term quadratic in the (controlled) drift a;(t). An agent leaving
her workplace xg at t = 0 has thus to adapt her drift in order to minimize the expected cost

Jilal = E [c(f) s / () dr} 3)
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