Accepted Manuscript

Partition signed social networks via clustering dynamics

Jianshe Wu, Long Zhang, Yong Li, Yang Jiao

PII: S0378-4371(15)00802-X

DOI: http://dx.doi.org/10.1016/j.physa.2015.09.066

Reference: PHYSA 16445

To appear in: Physica A

Received date: 28 January 2015 Revised date: 12 June 2015

Please cite this article as: J. Wu, L. Zhang, Y. Li, Y. Jiao, Partition signed social networks via clustering dynamics, *Physica A* (2015), http://dx.doi.org/10.1016/j.physa.2015.09.066

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Partition signed social networks via clustering dynamics

Jianshe Wu*, Long Zhang, Yong Li, Yang Jiao

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China,

Xidian University, Xi'an 710071, China

(Received 20 April 2015; published

Abstract

Inspired by the dynamics phenomenon occurred in social networks, the WJJLGS model is

modified to imitate the clustering dynamics of signed social networks. Analyses show that the

clustering dynamics of the model can be applied to par tition signed social networks. Traditionally,

blockmodel is applied to partition signed networks. In this paper, a detailed dynamics-based algorithm

for signed social networks (DBAS) is presented. Simulations on several typical real-world and

illustrative networks that have been analyzed by the blockmodel verify the correctness of the proposed

algorithm. The efficiency of the algorithm is verified on large scale synthetic networks.

Keywords: Graph partitioning; Signed social networks; Clustering dynamics; Community detection;

Complex dynamical networks.

1. Introduction

Social relations/links between actors may be positive or negative, for example, friendship/hostility,

attract/exclude, like/dislike, and respect/disrespect between individuals [1,2]. The networks that include

both positive and negative links are called signed social networks in the field of social science, and the

networks with only positive links are called positive social networks [3,4]. Partitioning the signed

social networks is quite different from partitioning the positive social networks, where the network is

partitioned into several communities with dense links in each community and sparse links between

communities [5-7]. By maximizing one of several cautiously defined criterion functions [8-10], the

positive social networks can be properly partitioned via dedicatedly designed algorithms (known as

community detection) [11-14]. On the other hand, it is well known that the dynamics of a network is

correlated with its structure [15-17]. The community structure of a positive social network may be

observed from the network dynamics [18-26] or cluster synchronization [27-30]. In cluster

synchronization, the nodes in the same cluster are synchronized but desynchronized with respect to

different clusters. Strict cluster synchronization usually requires a control scheme [27-30], thus it is

difficult to be applied to community detection directly. In Ref.[24], the WJJLGS model is proposed to

imitate the clustering dynamics of positive networks and used for community detection.

*Corresponding author. Tel.: +86 29 88202279.

E-mail: jshwu@mail.xidian.edu.cn.

1

Download English Version:

https://daneshyari.com/en/article/7379104

Download Persian Version:

https://daneshyari.com/article/7379104

Daneshyari.com