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h i g h l i g h t s

• Temperature changes are investigated in adiabatic processes near the critical points.
• Husimi–Temperley model and Slater model are applied to show the temperature changes.
• The general formalism is obtained by general representation of the free energy.
• Frustrated systems are also studied from the present aspects.

a r t i c l e i n f o

Article history:
Received 30 October 2014
Received in revised form 10 March 2015
Available online 3 April 2015

Keywords:
Magnetocaloric/electrocaloric effects
Phase transition
Husimi–Temperley model
Slater model
Fluctuation
Adiabatic process

a b s t r a c t

Adiabatic temperature changes of magnetocaloric/electrocaloric effects are analytically in-
vestigated. The analytical studies are based on the microscopic statistical models such as
Husimi–Temperley model and Slater model. As a result, we show the characteristic scales
of the adiabatic processes correspond to microscopic parameters, namely exchange cou-
plings and Slater energy. The scaled parameter dependence become stronger near the
critical point. Furthermore, using a general Hamiltonian method, we clarify the adiabatic
temperature changes depend on the relative ratio of characteristic scales. The present study
may propose a useful aspect for applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Adiabatic demagnetization is a useful way to make an ultra-cold state. The temperature decreases by vanishing the
applied magnetic field. This phenomena is also called ‘‘magnetocaloric effect’’. In non-adiabatic process, spin states change
gradually with decrease of themagnetic field. On the other hand, in adiabatic process, spin states cannot change because the
magnetic field vanishes so rapidly. It is necessary to decrease the temperature of the system to conserve the total entropy.
This magnetocaloric effect is enhanced near the critical point because the phase transition causes a drastic change of the
entropy. Previous studies have experimentally clarified the adiabatic change of temperature as magnetocaloric effects near
the critical point. For example, the maximum temperature change is 13 K in MnAs [1], while it is 15 K in Gd5(Si2Ge2) [2].

Obviously, the similar effect occurs on dielectric materials, that is, the temperature decreases by vanishing of electric
fields to keep the state of electrical polarizations. The quantitative temperature decrease is also reported as electrocaloric
effect near the critical point, namely temperature change of 11.78 K in BaTiO3 thin film [3], 31 K in PMN-PT thin film [4],
12 K in PZ0.95T0.05O3 thin film [5], 40 K in PLZT thin film [6], 45.3 K in Pb0.8Ba0.2ZrO3 thin film [7], 12 K in P(VDF/TrFE/CFE)
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film [8] and 12 K in P(VDF/CTFE) film [9]. These temperature changes,1T , are analytically studied using the thermodynamic
relations;

1T = −

 H2

H1

T
CH


∂m
∂T


dH, (1)

or

1T = −

 E2

E1

T
CE


∂P
∂T


dE, (2)

where the parameters CH and CE denote the specific heats, and the parametersm and P denote the magnitudes of the mag-
netization and the electric polarization, respectively. These studies suggest the possibility of an application of ferroelectrics
to cryogenic technologies and temperature controls. As shown in the previous studies, magnetocaloric/electrocaloric effects
have been studied by using experimental and analytical methods. However, especially in analytical studies, phenomeno-
logical approach is mainly used to introduce the free-energy of the system, and then, it is difficult to reflect the difference
of materials. For further applications, distinguishing the materials may become an important factor. In order to distinguish
the difference of materials, it is necessary to describe the properties of materials by microscopic ways.

In the present study, we try to clarify the treatments of the adiabatic magnetocaloric/electrocaloric effects including
phase transitions from the viewpoint of microscopic principles, and to understand the important scale to determine the
temperature changes near the critical point. Here the ‘‘microstructure’’ or ‘‘microscopic aspects’’ means the lattice structure
and the distribution of the interactions which controls the dynamics of the order parameters. In the aspect of statistical
mechanics, there are two famousways to treat themicroscopic viewpoints. One of them is the canonical ensemble treatment
which started from the Hamiltonian H of the focused system. The Hamiltonian H generally describes such microscopic
features as interactions, stochastic parameters and external fields, and then, the partition function Z ≡ exp[−βH] (where
β denotes the inverse temperature 1/kBT with the Boltzmann constant kB) includes the microscopic information. The
other one is the micro-canonical ensemble treatment which describes the microscopic features confining the states to the
constant energy E. In both ways, we can make the microscopic discussion of the adiabatic temperature changes. At first,
we apply Husimi–Temperley model to study the magnetocaloric effect. As is well known, Husimi–Temperley model is one
of the simple mean-field models on which a second order phase transition occurs and is defined by Hamiltonian. Using
this Hamiltonian, we show an example to obtain 1T by canonical ensemble treatments. This analysis is included in the
following section. Secondly, to study the electrocaloric effect, we study in the scheme of Slater theory which is well-known
microscopic theory of the phase transitions of KH2PO4 (ferroelectric material) in Section 3. This is one possible example
to study electrocaloric effects from microscopic viewpoints and is described by the form of microcanonical ensemble
treatments. The models in Sections 2 and 3 are different distributions of each other, whereas using the policy reflected
microscopic detail, we can approach microscopic temperature changes in both models. Thirdly, to study general adiabatic
temperature changes, we study magnetocaloric/electrocaloric effects from the general Hamiltonian in Section 4. Summary
and discussions are included in Section 5. Recently, critical research by Vdovych et al. was proposed [10]. They applied
a cluster approximation for the KH2PO4 Hamiltonian, and numerically obtained several typical properties of KH2PO4. We
mention the relation to this study in Section 5, and show that the fluctuation is important in conclusion.

2. Husimi–Temperley model

Here, we demonstrate a canonical ensemble treatment to analyze magnetocaloric effects based on Husimi–Temperley
model which is known as a mean-field model. Of course, the adiabatic transition processes (especially the time
developments) of the states cannot be treated by the canonical ensemble. Contrary to this, in the adiabatic cooling process,
we assume that the microscopic time scale of the state transitions is faster than that of such macroscopic quantities as the
entropy S. Actually, the previous studies [3–5,7,11] successfully explain the experimental results using the thermodynamics
of equilibrium states as discussed in the Introduction. As is well known, second order phase transition occurs on the
Husimi–Temperley model [12–14]. This system includes Ising spin variables {si} = {±1}, the ferromagnetic interaction
between spins J and the Zeeman term of magnetic field H . Thus, the Hamiltonian is defined [12–14] as

H = −
J
2N


i≠j

sisj − µBH


i

si. (3)

From Eq. (3), we can obtain the partition function Z as

Z ≃ exp

−

NJm2

2kBT
+ N ln


2 cosh


Jm
kBT

+
µBH
kBT


, (4)

using the saddle point method. The saddle point condition yields the equation of state

m = tanh


Jm
kBT

+
µBH
kBT


. (5)
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