
Physica A 433 (2015) 279–290

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

First passage time distribution of a modified fractional
diffusion equation in the semi-infinite interval
Gang Guo a,b,∗, Bin Chen a, Xinjun Zhao c, Fang Zhao c, Quanmin Wang c

a College of Information System and Management, National University of Defense Technology, Changsha, 410073, China
b Institute of Computer Science, University of Rostock, Albert Einstein Str. 22, Rostock, 18059, Germany
c Science and Technology on Complex Land Systems Simulation Laboratory, Beijing, 100012, China

h i g h l i g h t s

• We find the first passage time of a modified fractional equation for accelerating subdiffusion.
• The crossover of the first passage time between two distinct scaling regimes is revealed.
• The scaling behavior is different from that of the aging diffusion.
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a b s t r a c t

We investigate the first passage time (FPT) distribution for accelerating subdiffusion
governed by the modified fractional diffusion equation which has a secondary fractional
time derivative acting on a diffusion operator. For the FPT problem subject to absorbing
barrier condition, we obtain exact analytical expressions for the FPT distribution as well as
its Laplace transform in the semi-infinite interval. Most of the results have been derived
by using the Laplace transform, the Fourier Cosine transform, the Mellin transform and the
properties of the FoxH-function. In contrast to the Laplace transformof the FPT distribution
which can be expressed elegantly and neatly, the exact solution for the FPT distribution
requires an infinite series of Fox H-functions instead of a single Fox H-function. Numerical
result reveals that the crossover between the two distinct scaling regimes is apparent only
when the discrepancy between the two diffusion exponents becomes more pronounced.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion is one of the most important phenomena encountered in numerous physical, chemical and biological
systems [1]. However, the picture that has emerged over the last few decades clearly reveals that an increasing number
of natural phenomena do not fit into the relatively simple description of normal diffusion [2]. Anomalous diffusion turns out
to be quite ubiquitous and normal which is characterized by a nonlinear behavior for the mean square displacement in the
course of time [3].

The actual reason or the very nature of anomalous diffusion may vary a lot and there are several approaches or
frameworks such as fractional partial differential equations and continuous time random walk models that can be used
to describe these anomalous diffusion processes [4]. There are also many physical processes that lack constant power-law
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scaling over the whole time-domain. Such processes including retarding and accelerating anomalous diffusion [5,6] can be
described by distributed order fractional diffusion equations [7,8].

More recently, amodified fractional diffusionmodel has beenproposed to describe processes that become less anomalous
as time progresses by the inclusion of a secondary fractional time derivative acting on a diffusion operator [9,10],
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where 0 < α < β ≤ 1 and the generalized diffusion coefficient Kα, Kβ are positive constants with the dimensions [Kα] =

(length)2 · (time)−α and [Kβ ] = (length)2 · (time)−β respectively.
Note the Riemann–Liouville fractional derivative operator is defined by
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In fact, there exist different forms of distributed order fractional kinetic equations [7] and even more generalized multi-
term fractional diffusion equations in which the fractional derivative may be defined in the Riemann–Liouville or Caputo
sense [11–17]. These equations can be used to model a wide range of important physical phenomena including retarding
and accelerating subdiffusion and superdiffusion.

So far as themodified fractional time equation in form of Eq. (1) is concerned, it is primarily used to describe the so-called
accelerating subdiffusion, introduced and studied in Refs. [7,18]. It is known that such accelerating subdiffusion is charac-
terized by two different scaling behavior of the mean-square displacement, i.e., a smaller short-time power-law exponent
and a larger long-time power-law exponent [19]. Among phenomena exhibiting such behavior, one can find the proteinmo-
tions in cell membranes [20], the diffusion of telomeres in the nucleus of mammalian cells [21], molecules diffusing in living
cells [22,23], and a random motion of bright points associated with magnetic fields at the solar photosphere [24]. Another
possible application of this equation is in econophysics [25] and particularly the crossover between more and less anoma-
lous behavior has been observed in the volatility of some share prices [26]. In general, themodified equation is advantageous
when describing processes which get less subdiffusive in the course of time.

At this point we note that Henry and Wearne [27] find in their derivation of fractional reaction–diffusion equations an
additional term
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on the right of Eq. (1) where L −1 is the Laplace inverse transform. The value of this term is unclear as it necessitates the
behavior of the term to be known near t = 0. However it can be shown from the solution of Eq. (1) that these terms are zero
and can be neglected [28].

For this modified fractional diffusion equation, Langlands et al. proposed the solution with the form of an infinite series
of Fox H-functions on an infinite domain [28]; Liu et al. discussed the numerical method and analytical technique of the
modified anomalous subdiffusion equation with a nonlinear source term [29,30]; Chen developed the numerical method to
solve the two-dimensional variable-order modified diffusion equation [31].

In connection to these approaches, the first passage time (FPT) plays an important role in the investigation of the
stochastic process or the microscopic mechanism of such anomalous diffusion. The FPT distribution gives the probability
distribution that a diffusing particle first reaches a specified site at a specified time [32]. Escape times from a random
potential, intervals between neural spikes, and fatigue failure times of engineering structures are all examples of FPTs,
arising in physics, biology, and engineering, respectively [33]. The first passage probability is mostly concerned with the
time required for a stochastically driven particle to first reach a given location and the probability that this location is ever
reached [34]. In this context, the knowledge of the FPT distribution is essential for effective probabilistic analysis.

Unfortunately, only in very few cases one has exact analytical expressions for the FPT distribution especially when
the anomalous diffusion is considered [35,36]. For the Levy type anomalous diffusion, the FPT distribution or its Laplace
transform can be obtained based on the fractional Fokker–Planck equation only for the zero drift case or the non-zero drift
casewith one absorbing barrier [37,38]. For the usual and fractional nonlinear diffusion equationwhose diffusion coefficient
is space- and/or time-dependent, analytical solutions can also be given for the FPT distribution in a finite interval and a semi-
infinite interval with absorbing barriers [39,40]. The mean FPT and the asymptotic behavior of the FPT distribution for some
other cases are also investigated in Refs. [41–43]. Recent theoretical studies associated with first passage phenomena have
gone even far beyond pure diffusive transport and/or ideal geometries [34].With the diverse applications of the first passage
theory, the need for analytical FPT distributions becomes more apparent.

For the purpose of this paper, we will only consider the FPT distribution subject to absorbing barrier condition in the
semi-infinite interval for the anomalous diffusion process governed by Eq. (1). Our objective is to derive exact analytical
solution for the FPT distribution as well as its Laplace transform.
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