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h i g h l i g h t s

• Energy transfer in systems subject to different sources of nonequilibrium is studied.
• Single and multiple resonant phenomena depending on the frequency regimes are found.
• A crossover between a mechanical resonance and a thermodynamical one is reported.
• A ‘‘red shift’’ resonance that is size dependent is shown.
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a b s t r a c t

We analyze the energy transport in a one dimensional chain composed by two Frenkel–
Kontorova (FK) segments connected together by a time modulated coupling. The ends are
immersed in two thermal reservoirs with oscillating temperatures. We observe a single
and multiresonant heat transport depending on the regimes considered, with a crossover
between a mechanical resonance and a thermodynamical resonance. The dynamical tun-
ing between these two regimes requires the synergetic presence of both time dependent
sources of nonequilibrium. In the single resonant regime we analyze a ‘‘red shifted’’ reso-
nant frequency that is dependent on the size of the system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During last years a fast development of the emerging field of phononicswas achieved,where themanipulation and control
of phonons (heat transfer) at the nanoscale andmolecular level has become a fundamental topic due to its technological and
practical implications [1]. The problem of phonon transport, that is a thermal nonequilibrium problem, is less understood
than that of electron transport. In addition to electrons and photons, phonons carry heat and information. However,
comparing with electron and photons, phonons are more difficult to control. So, an important and relevant issue is to
understand further the mechanisms for heat transfer assisted by phonon and its generation in nano and micro devices
and how it affects their structural stability. In this sense, it becomes essential to studymechanisms that dissipate or redirect
heat efficiently, or under what operating conditions a given device can act as a good conductor or insulator.

It is known that two necessary conditions are fundamental for the emergence of thermal current: symmetry breaking
and nonequilibrium sources. These two conditions in nonlinear lattices produce abnormal thermal transport phenomena,
such as thermal rectification and negative differential thermal resistances.
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Fig. 1. Model system composed by two one-dimensional chains coupled by a modulated interaction in time and coupled to two heat baths Langevin at
their ends.

Several models and mechanisms have been proposed to control or manipulate the heat at the nanoscale. One way is to
tune the structural asymmetry or the degree of anharmonicity [2–11]. It has been demonstrated that the nonlinearity can
be utilized to design novel nanoscale solid-state thermal devices such as thermal diodes [12–16], thermal transistors [17],
thermal logic gates [18] and thermal memories [19,20].

Othermechanismsmay require an external appliedwork on the system tuning or controlling heat dynamically. In Ref. [14]
it was proposed a heat ratchet to direct heat flux from one bath to another in a nonlinear lattice, which periodically adjusts
two baths temperatures while the average remains equal, or brownian heat motors to shuttle heat across the system [21].
We can alsomention heat pumpswhich directs heat against thermal bias in nanomechanical systems [22], or phonon pumps
induced at the molecular levels by an external force or with a mechanical switch on–off or a modulation of the coupling be-
tween different parts of the system [23–26]. Experimentally this can be done inmolecular junctions or inmolecular systems,
for example, varying the distance among them. It was also demonstrate theoretically that mechanical actions as stretching
(or compressing) a wire, can tuned the phononic band structure in such a way that multiple phononic channels are opened
one by one. In this way and as in the electronic case, it is found amultiple-step quantized phononic thermal conductance [3].

The distinctive and unique transport properties of low-dimensional system has posted great challenge to find
mechanisms to manipulate heat transfer in meso and nanoscopic phonon systems. Therefore, it is highly desirable any
attempt towards a thorough understanding of the heat transport in general one-dimensional nonlinear lattice systems. In
this paper we extend these studies to analyze the synergetic effect of heat transfer through one dimensional systems when
are present simultaneously two time dependent mechanical and thermodynamical sources of nonequilibrium.

2. The model

We consider a one dimensional array of atoms, harmonically and bidirectionally coupled. The chain is divided in two
segments (L, R)with different coupling intensities KL and KR between elements and coupled together also harmonicallywith
a coupling constant Kint . The system is subject to an on-site potential (Frenkel–Kontorova (FK) chains) as it is shown in Fig. 1.

The Hamiltonian of the system can be written as: H = HL + Hint + HR where HL/R is the Hamiltonian to the left (L)/right
(R) segments respectively and Hint represents the interaction between the two segments.
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with N the total number of atoms.
If each segment has N/2 elements, the interaction Hamiltonian can be written as:

Hint =
1
2
Kint(t)(XN/2+1 − XN/2)

2 (2)

with mi the mass of the ith atom, Xi = qi − ia denotes the displacement from the equilibrium position ia, where a is the
periodicity of the on-site potential (corresponding to a commensurate state), and Pi is the momentum.

KL/R are the elastics constants in each segments and V0 is the depth of the on-site potential. The fixed ends of the L/R
segments are in contact with two thermal baths which are simulated through Langevin type reservoirs with zero mean and
variance ⟨ξi(t), ξk(t ′)⟩ = 2γKBTiδ(t − t ′)δi,j, where γ is the strength of the coupling between the system and the baths, and
Ti, i = L/R, is the temperature of each bath. The system is driven out of equilibrium by two different mechanisms:

(a) Modulation of the coupling between segments: Kint(t) = K0(1 + sin(ωK t)).
(b) Modulation of the temperature of the reservoirs: TL,R(t) = T0,i(1 + ∆sgn(sin(ωtempt))), i = L, R with T0,i the reference

temperature of each reservoir.

The integration of the equations of motion is performed with a 2nd-order stochastic Runge–Kutta algorithm, for
sufficiently long time (of order of 109–1010 integration steps) to guarantee that the system reaches a stationary state. We
apply fixed boundary conditions and for the numerical simulations we use dimensionless parameters: spring constants Ki
in units of KR, moments in units [a(mkR)1/2], frequencies in units [(KR/m)1/2] and temperatures in [a2KR/kB]. For a typical
atom and a typical situation these units corresponds to frequencies ∼1013 s−1 and temperatures ∼103, 104 K. Thus the
nondimensional temperatures 0.01–0.1 correspond to temperatures of the order 100–1000K. On the other hand, frequencies
are assumed to be smaller than the inverse of typical electron–phonon relaxation times ∼0.1 ps (dephasing time), in order
to consider only the relevant time scales of phonon scattering processes.
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