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h i g h l i g h t s

• Closed solutions are obtained to the Fokker–Planck equation with linear and with quadratic diffusion terms.
• Applied to real world time series to generate probability distribution forecasts.
• Parameters in the models are dynamically estimated from past data.
• Solutions compared to those from autoregressive models with good results.
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a b s t r a c t

Closed solutions to the Fokker–Planck equation with linear and quadratic diffusion terms
have been generated. These are applied to forecasting time series to generate a probability
distribution for the next point, rather than a single point estimate as in autoregression. The
parameters in these models are dynamically estimated from past data. The resulting solu-
tions are compared to a conventional autoregressive approach with encouraging results.

© 2014 Published by Elsevier B.V.

1. Introduction 1

In forecasting a time series, {Xt , t = 1, . . . ,N}, formany real world situations, rather than a forecast of the ‘best’ estimate 2

for the next point XN+1, what is needed is a probability distribution of the possible values of XN+1. Kantz and Schreiber [1] 3

mentioned tackling this through the use of a Fokker–Planck equation in a probability distribution function W (x,N + t), 4

where W (x,N + t).dx is the probability of finding the actual XN+t in (x, x + dx) at time t after N , but they do not take this 5

further because of difficulties in estimating the parameters. Several more recent papers (e.g. Refs. [2–4]) have sought to use 6

forecastingmethods based upon a non linear Langevin equation leading to a Fokker–Planck equation, but any solutions have 7

been numerical. Some, e.g. Ref. [5], estimate the moments M(n)(x) = ⟨(Xt+1 − x)n⟩|X(t)=x from the data and thus create the 8

drift and diffusion coefficients but they also solve the resulting Fokker–Planck equation numerically. Furthermore sampling 9

intervals and noise can cause distortions in these estimates of the moments [6,7]. Thus the two main problems in using a 10

Fokker–Planck equation for forecasting are: finding the drift and diffusion coefficients and solving the resulting equation. 11

In this paper we generate a closed analytical solution to the Fokker–Planck equation for various polynomials for these 12

drift and diffusion coefficients, which enables us to choose the parameters for these polynomials by selecting values that 13

generate the ‘tightest’ (i.e smallest variance) distribution that meets the probabilistic criteria of the past data. 14
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In Section 2we lay out threemodels for the drift anddiffusion coefficients: amodelwith linear drift and constant diffusion1

(an Ornstein Uhlenbeck process); a model with linear drift and linear diffusion; a model with linear drift but quadratic2

diffusion. We indicate how to generate a closed solution to the Fokker–Planck (FP) equation in each case. In the last section3

we report on computational experience applying these results to some time series (daily sales data from a supermarket),4

that seem to be quite volatile [8], and compare these to results from using a standard autoregressive (ARMA) approach.5

2. The models6

The time series of measurable quantities can be modelled by means of a linear autoregressive moving average model7

(ARMA) and also by a non-linear Langevin equation with the latter leading to a Fokker–Planck (FP) equation inW (x, τ + t),8

whereW (x, τ + t).dx is the probability of the actual Xτ+t being in the interval (x, x+ dx) and where τ is the time of the last9

known observation. The resulting Fokker–Planck equation is:10

∂W
∂t

= −
∂

∂x
(D(1).W )+

∂2

∂x2
(D(2).W )11

where D(1) is the drift coefficient and D(2) is the diffusion coefficient. We solve this for different models for D(1) and D(2).12

This equation is solved for t > 0 for each τ with boundary condition W (x, τ + 0) = δ(x − Xτ ), where Xτ is the actual13

observation at time τ . We confirm that the solution has


+∞

−∞
W (x, τ + t).dx = 1 for all t as W (x, τ + t) has to remain14

a probability distribution. Thus we have an ensemble of solutions, one at each τ giving, for that particular τ , a family of15

distributions for each of the outcomes at time given by t = 1, 2, 3, . . . .16

When we compare results for these ARMA and Fokker–Planck models we should note that they differ in both objective17

and assumptions:18

The objective of an ARMAmodel is to forecast as accurately as possible the next actual value, i.e. X̂τ+t : any distribution for19

the actual Xτ+t is taken as Gaussian with mean X̂τ+t and a variance which has been estimated using past experience of the20

inaccuracy of these forecasts. For the Fokker–Planckmodel the objective from the outset is to predict, not a particular value,21

but thewhole distribution of the possible valuesXτ+t : i.e. the probability distributionW (x, τ+t)whereW (x, τ ) = δ(x−Xτ ).22

These ARMA and Fokker–Planck models are also based upon very different assumptions. For (p, q) with p > 1 ARMA23

assumes the time series not to be Markovian, to be stationary and ergodic. The Fokker–Planck model assumes that theQ224

series is Markovian and it does not need the stationarity or the ergodicity assumptions. Thus for the Fokker–Planck solution25

we can adapt the parameters based upon the current situation at time τ .26

2.1. Constant diffusion27

In all our models we take the drift coefficient D(1) = −γ x. In this first model we take the diffusion coefficient to be28

constant: D(2) = c29

The resulting Fokker–Planck equation is:30

∂W
∂t

= +
∂

∂x
(γ .x.W )+ c.

∂2

∂x2
W . . . . (2.1)31

The solution to this is well established (e.g. see [9]) as:Q332

W (x, τ + t) =


γ

2πc(1 − e−2γ t)


. exp


−
γ .(x − e−γ txτ )2

2c(1 − e−2γ t)


. . . . (2.2)33

2.2. Linear diffusion34

In this case we choose the diffusion coefficient to be D(2) = c + bx, but we keep the drift coefficient as D(1) = −γ .x. This35

generates a FP equation:36

∂W
∂t

= +γW + (γ x + 2b).
∂

∂x
(W )+ (c + bx).

∂2

∂x2
W . . . . (2.3)37

To solve this we take a Fourier transform to give:38

∂Ŵ
∂t

= −ck2.Ŵ − (γ k − ibk2).
∂

∂k
.Ŵ . . . . (2.4)39

We solve for Ŵ by the method of characteristics with the initial condition Ŵ (k, τ + 0) = e−i.kXτ . However to complete40

the reverse FT we have to show thatW (x, τ + t) is equal to the residues inside a contour integral along the path PQR in the41

complex plane, where PQ is a straight line from P = (1,−b′m(1 − e−γ t) to Q = (1,+b′m(1 − e−γ t) and QRP is an arc of42

radius =

1 + (b′)2m2(1 − e−γ t)2. (Note that we have defined c ′

= c/γ and b′
= b/γ )43
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