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h i g h l i g h t s

• A new concept of temperature called gravitational temperature is introduced.
• The concept of the gravitational thermal capacity is also introduced.
• The minimummass is estimated for the pure self-gravitating system.
• The thermodynamic stability condition can be determined by the nonextensive parameter.
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a b s t r a c t

The pure self-gravitating system in this paper refers to amulti-body gaseous systemwhere
the self-gravity plays a dominant role and the intermolecular interactions can be neglected.
Therefore its total mass must be much more than a limit mass, the minimum mass of
the system exhibiting long-range nature. The method to estimate the limit mass is then
proposed. The nonequilibrium stationary state in the system is identical to the Tsallis
equilibrium state, at which the Tsallis entropy approaches to its maximum. On basis of
this idea, we introduce a new concept of the temperature whose expression includes the
gravitational potential and therefore we call it gravitational temperature. Accordingly,
the gravitational thermal capacity is also introduced and it can be used to verify the
thermodynamic stability of the astrophysical systems.

© 2014 Published by Elsevier B.V.

1. Introduction 1

The self-gravitating system is a type of multi-body system naturally organized through the gravitational interactions. 2

Planets like our Earth, stars like the Sun, and even the galaxies consisting of so many stars all belong to such systems. It is 3

well known that inmany cases the classical Boltzmann–Gibbs (BG) statistical method is not applicable to such astrophysical 4

systems because the exponential distribution functions based on BG statistics would lead to many unreasonable theoretical 5

results, such as the infinite mass and the negative capacity problem. 6

Since nonextensive statistics was proposed in 1988 [1], the theoretical successes in both astronomy and astrophysics 7

[2–5] and space plasmas [6–11] have shown that the new statistical method may be suitable for describing many 8

astrophysical systems. In this work, we apply the methods of nonextensive statistics to study the nonequilibrium property 9

of a pure self-gravitating system. The pure self-gravitating system refers to a gaseous system in which no phase transition 10

and no nuclear reactions take place and the self-gravity plays a dominant role. 11
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Obviously, such a pure self-gravitating system is a gaseous sphere consisting of the particles with self-gravitating1

interactions. In the classical BG statistics, the total energy of the gaseous sphere [12] is2

E = −
3
2
NkBT̄ , (1)3

and so the thermal capacity is4

CV =
dE
dT̄

= −
3
2
NkB, (2)5

where T̄ is the average temperature of the system. Eq. (2) indicates that the system is thermodynamically unstable and6

will lead to the so-called gravothermal catastrophe, which was discussed in the system in a spherical adiabatic wall7

[13,14]. According to Eq. (2), the conclusion can be drawn that most self-gravitating systems do not exist in the universe for8

long-term, which, obviously, conflicts with the observation facts.9

In the previous work, we divided the self-gravitating system as three kinds. In the first kind of system whose total mass10

is less than σMe, where Me is the mass of the earth and σ is a parameter whose value ranges about 10–300 [15], the inter-11

molecular potential can play an important role. Under certain conditions, say, when the pressure is high enough near the12

center of the system, the phase transition related to the intermolecular interactionmay take place, one result of which is the13

sign of the thermal capacity of the whole system to become positive, thus leading to thermodynamic stability of this kind14

of system. In the third kind of system whose total mass is more than 0.08M⊙, where M⊙ is the solar mass, just as everyone15

knows, there exist nuclear reactions in the core. Obviously, the intermolecular interactions can be ignored due to very high16

temperature in such case. Therefore, the phase transition similar to that in the first kind of system does not appear. Although17

its heat capacity is negative, the energy compensation due to the nuclear reactions keeps thermodynamic stability of the18

whole system, which actually presents almost in all of the stars. In the second kind of systemwhose total mass is more than19

σMe and less than 0.08M⊙, the short-range intermolecular potentials can also be neglected. It is clear that in such a system20

there is neither the phase transition related to the molecular potentials nor the nuclear reactions taking place. This kind of21

system is just the pure self-gravitating system we discussed in this paper.22

The paper is organized as follows. The minimum mass as the pure self-gravitating system is studied in Section 2,23

the nonequilibrium stationary state and the Tsallis equilibrium is discussed in Section 3, the concept of gravitational24

temperature is introduced in Section 4, the thermodynamic stability condition (TSC) and the gravitational thermal capacity25

are studied in Section 5, and finally the conclusions and discussions are given in Section 6.26

2. The minimum mass as the pure self-gravitating system27

It is well-known that the intermolecular potentials have the nature of short-range interactions, then in the system28

consisting ofmanymolecules, the total intermolecular potential is approximately proportional to themolecule numberN . In29

contrast, the gravitational interactions have the nature of long-range, then the total gravitational potential is approximately30

proportional to somepower of themolecule numberN of the system, that is,∼Nn, where n is a real number and n > 5/3 [15].31

(This is a conservative estimate we give according to the constant density distribution. For a self-gravitating system with32

constant density, its total potential energy (absolute value) should be proportional to N5/3. For a real self-gravitating system33

whose mass is more concentrated, the total potential energy is more than that of the system with constant density. This34

means the exponent may be n > 5/3.)35

Obviously, with the increase of molecule number, the total gravitational potential increases more rapidly than the total36

molecular potential in the gaseous system. When the molecule number is large enough, the intermolecular potentials can37

be neglected compared with the gravitational potentials, thus the latter will play a dominant role in such system. Therefore,38

we now propose a method to estimate the minimum mass of such a pure self-gravitating system consisting of gaseous39

molecules.40

For the laboratory system whose size is about dozens of meters, the self-gravitating potential energy can be ignored41

relatively to the interaction energy between the molecules. On the contrary, for the huge self-gravitating gaseous system,42

like the Sun, themolecular potentials are negligible relatively to the gravitational potential energy. Therefore, theminimum43

mass can be determined by just equating these two potential energies. For simplicity, we assume that the mass density of44

the pure self-gravitating system is a constant, and then we easily find the self-gravitating potential energy,45

U = −
6
5
GM2

R
, (3)46

whereM is the totalmass of the system, and R is the radius of the gaseous sphere. Next, for calculating the interaction energy47

of molecules, we adopt the two-molecule interaction potential proposed by Lenard Jones [16],48

φ(r) = φ0

 r0
r

12
− 2

 r0
r

6


, (4)49
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