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h i g h l i g h t s

• The fiber bundle model is simulated by dividing the tensile process into several segments.
• The crossover behaviors in avalanche size distribution near the catastrophic failure are illustrated.
• The evolution of fracture parameters with tensile process is well fitted by some simple function relationship.
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a b s t r a c t

The crossover behavior near the catastrophic failure in the avalanche process of fiber bun-
dlemodel in local load sharing condition is numerically investigated by dividing the tensile
stretching process into several segments. In every segment of the tensile process, the frac-
ture parameters, such as the number of fracture fibers, the energy emission, the avalanche
size and its distribution, are calculated respectively. The results illustrate that the evolu-
tion of the fracture process from the initial tensile stage to the final fracture can be well
described by a power law relationship or a simple quadratic polynomial. In the vicinity of
the catastrophic failure, the avalanche size distribution appear crossover behaviorwith two
different power law exponents, which provides a possible route for theoretically predicting
the catastrophic fracture of materials.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As the basis of assessing the stability and predicting the catastrophic failure of materials, the statistical properties and
its microscopic mechanism of the rupture process have attracted much theoretical and technological interests. Due to the
inherent nonuniformity and disorder in actual materials, the theoretical approach of statistical physics is widely used to
investigate the statistical properties [1]. Specifically, most of the statistical investigations on the rupture of disordered
materials rely on a so-called fiber bundlemodel (FBM), whichwas first introduced by Peirce nearly a century ago [2]. Despite
of its simple algorithm, in most cases, the FBM can capture correctly the collective static and dynamic properties of fracture
failure in loaded materials [3,4].

The FBM consists of a series of elastic fibers mounted in parallel between two hard clamps. Each fiber is linearly elastic
up to a threshold load, after which it fails irreversibly. Under stress-controlled loading condition, after each fiber failures,
the load carried by the broken fiber is redistributed among the intact fibers. The subsequent load redistribution can lead to
an entire avalanche of breakages, which can either stop after a certain number of consecutive failures, keeping the integrity
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of the bundle, or can be catastrophic, resulting in the macroscopic failure of the entire system. According to the strength of
transverse association in the rupture process, the redistribution mechanism of the extra stress released from broken fibers
can be classified into several types. The most common one is global load sharing (GLS), that is, after each fiber failures,
the released load is equally redistributed among all the intact fibers. The FBM in GLS case assumes the interaction among
the fibers with a mean field approximation and can often be solved analytically. On the other hand, The extreme case of
the short-range interaction is the local load sharing (LLS) maintaining stress concentration around the broken fibers. In this
case, the extra load released from failing fibers is transferred to their nearest intact neighbors. Due to the nontrivial localized
spatial correlation, the analytical solution of LLS bundles becomes quite difficult [5]. In most cases, LLS models can only be
studied through computer simulation or determination of asymptotic behaviors. In fact, some researches show that stress
redistribution in actual heterogeneous materials should fall in many intermediate load sharing forms, such as the power
law redistribution rules [6].

On the macroscopic scale, the various stretching and fracture natures of actual materials can be described visually by
the stress–strain relationship, by which, different fracture properties of materials can be intuitively divided into brittle,
semi-brittle, plastic and so on. As the applied load increases quasi-statically, there exists a critical stress σc , beyond which
the catastrophic failure of the whole system takes place. While for the microscopic fracture mechanism, the most impor-
tant characteristic of the model is the size distribution of the burst avalanches, which can be monitored experimentally by
acoustic emission technique [7–9]. In the GLS case, the avalanche size distributions of the classical FBMwith various fracture
threshold distributions follow a power law with a universal exponent − 5/2 [10–12]. While in the LLS limit, the avalanche
size distributions show more complicated properties, depending on the specific fracture mechanism of the single fiber
[13,14]. In general, current studies on FBM mainly involve the describing of the constitutive relationship, the determina-
tion of the critical stress σc , and the investigation of the statistical property of the avalanche process.

In order to obtain amore realistic description for awide range of composites, a series of deformationmodels based on the
classical FBM have been introduced. In the respect of stress distribution, Hidalgo et al. [15] introduced an interpolation form
between the two limit case of load redistribution, i.e. the global and the local load sharing schemes. By varying the correlation
strength between an intact element and the rupture point, the crossover behavior frommean-field approach to short-range
correlation was obtained in the properties of the FBM. In order to describe numerous non-brittle fracture process of various
biological materials, some complicated tensile fracture properties were introduced to a single fiber instead of the simple
brittle fracture. For instance, the continuous damage FBM [16], or continuous damage FBMwith strong disorder [17], the FBM
with stick–slip dynamics [18,19], and themultilinear FBM [20]. SomeFBMwithmixed fiberswere also introduced to describe
a lot of heterogeneous materials. For example, Divakaran et al. [21,22] studied FBM with mixed fibers, whose threshold
strength was randomly chosen from two uniform or Weibull distributions; Bosia et al. [23] developed a hierarchical FBM
consists of a certain percentage of fragile fibers and plastic fibers, which can simulate the hierarchical structures of some
biological materials, such as spider silk; Hidalgo [24] introduced the FBM with strong heterogeneities which is composed
of classical brittle fibers and unbreakable fibers. In addition to study the avalanche process, the FBM has also been used to
investigate some slow damage process of materials, such as creep process [25].

In order to investigate the dynamic critical behavior before the fixed point in the failure process, Pradhan et al. [26] intro-
duced the FBMwith a low cutoff which is assumed to has a low cutoff in the strength threshold distribution. In the following
papers [14,27–29], the crossover behaviors in the failure avalanche process, such as avalanche size distribution and step of
load increase, were studied not only in GLS or LLS case, but also in a general LLS case which is an interpolation model be-
tween GLS and LLS. In addition, Pradhan et al. [30,31] also investigated the energy burst distribution in the GLS model and
the prediction of the collapse point of the overloadedmaterials by the breaking-rateminimum. Recently, based on the above
researchworks on the loaded FBMwith a low cutoff, Pradhan [32] given the crossover behavior and the critical phenomenon
in the vicinity of themacroscopic failure point. Then, the predict method of the final failure point was constructed in various
loading conditions.

Compared to GLS case, the other limit case, i.e. the LLS can better describe the stress redistribution in some actual het-
erogeneous materials. Therefore, it is of great significance to study the fracture evolution in the tensile process of the FBM
in LLS case. Although the FBM with a low cutoff threshold has achieved huge success in the study of the crossover behavior
in the avalanche process of FBM in GLS case, it is not suitable to use the same model to simulate the crossover behavior of
FBM in LLS case. The reason is that, in LLS case, the previous fracture process will bring prominent damage localization and
stress concentration near the crack front, which hinder the simulating of the previous fracture process by the low cutoff of
fracture threshold. In this paper, the tensile fracture process is divided into several subsections, in which some parameters,
such as the maximum avalanche size, the mean energy burst, are recorded and averaged. Then, the fracture evolution in the
tensile process and the crossover behavior near the catastrophic failure, which can provide a possible route for theoretically
predicting the macroscopic fracture, are exhibited and discussed.

2. The crossover behavior of the avalanche process of the FBM in LLS

In this paper, we utilize a classical FBM in LLS case, the specific arithmetic can be described as follows: the bundle consists
of N parallel fibers, all with an identical Young modulus Ef = 1, but with random failure thresholds σi, i = 1, 2, . . . ,N .
The fibers are assembled on a one-dimensional lattice of length L. The failure strength of individual fibers is an independent,
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