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h i g h l i g h t s

• We report an inaccuracy in classical reaction–diffusion models for virus infections.
• We present a new model preventing virion diffusion during intracellular replication.
• Our model yields better results than nondelayed models for two T7 virus strains.
• The predicted infection speed saturates for high values of the virus adsorption rate.
• The predicted infection speed is highly dependent on the death rate of infected cells.
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a b s t r a c t

The propagation of virus infection fronts has been typically modeled using a set of classical
(noncohabitation) reaction–diffusion equations for interacting species. However, for some
single-species systems it has been recently shown that noncohabitation reaction–diffusion
equations may lead to unrealistic descriptions. We argue that previous virus infection
models also have this limitation, because they assume that a virion can simultaneously
reproduce inside a cell and diffuse away from it. For this reason, we build a several-
species cohabitation model that does not have this limitation. Furthermore, we perform
a sensitivity analysis for the most relevant parameters of the model, and we compare the
predicted infection speed with observed data for two different strains of the T7 virus.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Reaction–diffusion fronts have many applications in Physics, Biology and cross-disciplinary topics [1–4]. Some purely
physical examples are superconducting fronts [5] and combustion flames [6]. In this paper we consider a biophysical
application, namely the spread of virus infections in a cell culture [7–11]. Very recently, the importance of this research
in the context of virus treatments of cancer tumors has been stressed [12]. This interest is due to the fact that some viruses
can selectively kill tumor cells and therefore be used in medical treatments of cancer tumors [12]. Therefore, understanding
the spatial speed of virus infections is not only a relevant biological phenomenon, but also has potentially relevant clinical
applications.

In focal infections a cell in a culture is infected by a virion (i.e., a single virus particle). The virion reproduces inside the cell.
Some time later, a new generation of virions leaves the cell, they diffuse away and infect other cells. This cycle is repeated
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many times and a region of dead cells (a plaque) grows at a constant speed, which can be measured experimentally. The
propagation of such focal infections has beenmodeledmathematically [7,13–15]. The interactions between the three species
in the system can be summarized as follows

V + B
k1
→ I

k2
→ yV , (1)

where V , B and I refer to virus, uninfected cells, and infected cells, respectively. k1 stands for the adsorption rate of a virion
into a uninfected cell (the latter is sometimes called the host). k2 is the rate for the death (or lysis) of an infected cell, a process
that releases y new viruses into the extracellular medium (y is called the yield). In the case of cells, diffusion does not take
place because cells are immobilized in agar. Thus, the evolution of B and I is governed only by reaction (i.e., population
growth) effects, which are well described by the following two equations [7,13–15]

∂B(r, t)
∂t

= −k1B(r, t)V (r, t), (2)

∂ I(r, t)
∂t

= k1V (r, t)B(r, t) − k2I(r, t). (3)

In Eqs. (2) and (3) r is the radial coordinate (distance to the point where the virus was first inoculated), and the symbols
[. . .] denote concentration.1 In contrast to cells, virions are able to diffuse within the extracellular medium. Furthermore,
the delay or lag time T that the virions need to replicate inside the infected cell has been shown to be critically important
in order to predict realistic infection speeds [7,14]. In previous models, these features of the virus population were studied
by means of the following time-delayed reaction–diffusion equation [7,13,14]

∂V (r, t)
∂t

+
T
2

∂2V (r, t)
∂t2

= Deff
∂2V (r, t)

∂r2
+ F(r, t) +

T
2

∂F(r, t)
∂t


g
, (4)

where F is called the virus growth function, that reads:

F(r, t) ≡
∂V (r, t)

∂t


g

= −k1V (r, t)B(r, t) + k2yI(r, t). (5)

In Eqs. (4) and (5), the subindex |g remarks that the corresponding time derivativesmust take into account growth effects,
but not diffusion (see Ref. [16] for a detailed discussion on this point). Moreover, in Eq. (4) we have applied the effective
diffusion coefficient Deff, which takes into account the effects of the actual hindered diffusion. In this sense, Deff introduces
the corresponding diffusion corrections due to the presence of spheroids (host bacteria) in themedium in which the viruses
diffuse. The relation between Deff and the virus diffusivity D in the continuous medium (in our case agar) is given by the
Fricke’s equation [17]:

Deff =
1 − f

1 +
f
x

D, (6)

where f = B0/Bmax is the initial concentration of bacteria in the experiment relative to its maximum possible value, and x
takes care of the shape of the suspended particles (host bacteria). In this paper we will consider the E. coli species, for which
the shape factor x = 1.67 was derived in Ref. [7].

In recent years, single-species reaction–diffusionmodels have beenmodified to take into account the cohabitation effect,
namely the fact that for some biological species (e.g. humans) newborn individuals cannot disperse away from their parents
until a delay time after their birth [18]. Mathematically this leads to a different kind of reaction–diffusion equation, in which
the contributions of biological reproduction and dispersal are not added up but computed as separate steps (for example,
first reproduction and later dispersal). Clearly, this effect takes place also in virus infections, because it is well-known that
after a virus enters a cell, the new generation of viruses does not leave the cell until after a delay time corresponding to
the death of the host cell. In the present paper, we build a model that takes this cohabitation effect into account for virus
infections. We will also apply it to describe additional experimental data to those analyzed in previous papers [7,13,14].

2. Cohabitation model

Typically, models for virus focal infections are either based in Eq. (4) [7,13,14], or in its classical nondelayed version
[15,19], namely Eq. (4) with T = 0 (i.e., Fisher’s equation). Before modifying Eq. (4), we need first to recall that it can be
derived from the following integro-difference reaction–dispersal equation [20,21]

V (x, y, t + T ) − V (x, y, t) =


V (x + ∆x, y + ∆y, t)φT (∆x, ∆y)d∆x∆y

− V (x, y, t) + RT [V (x, y, t)] − V (x, y, t), (7)

1 An additional, quadratic term has been sometimes added to Eq. (3) in order to describe the so-called one-step experiments [7,14] but is not necessary
for the purposes of the present paper, becausewe are here concernedwith the front speed, which is derived by linearizing the reaction–diffusion equations.
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