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h i g h l i g h t s

• We determine the partial and global MFPT of random walks on dual dendrimers.
• We uncover the impact of trap location on the transport efficiency on dual dendrimers.
• We discuss the influence of loop structure on the transport efficiency.
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a b s t r a c t

The random walk approach has recently been widely employed to study the relations be-
tween the underlying structure and dynamic of complex systems. The mean first-passage
time (MFPT) for randomwalks is a key index to evaluate the transport efficiency in a given
system. In this paper we study analytically the MFPT in a dual structure of dendrimer net-
work, Husimi cactus, which has different application background and different structure
(contains loops) from dendrimer. By making use of the iterative construction, we explicitly
determine both the partial mean first-passage time (PMFT, the average of MFPTs to a given
target) and the global mean first-passage time (GMFT, the average of MFPTs over all cou-
ples of nodes) on Husimi cactus. The obtained closed-form results show that PMFPT and
EMFPT follow different scaling with the network order, suggesting that the target location
has essential influence on the transport efficiency. Finally, the impact that loop structure
could bring is analyzed and discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Networks have gained recognitions as a kind of fundamental representation of various complex systems; including
physics, biological system, the Internet, social system and many others [1–5]. Structure and dynamics are two important
issues in network studies. Accordingly, it becomes a basic challenge to understand the relations between the underlying
topology of the system and its dynamics [3,6]. As a representative stochastic process, random walks have been introduced
into complex networks to simulate a wide variety of dynamics in distinct fields [7,8]. The most useful quantity in the anal-
ysis of random walk is mean first-passage time (MFPT), which is the expected number of steps before the target node is
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visited as starting from a source node [9–12]. MFPT provides a quantitative standard for measuring the transport efficiency
of random walks, and is proven to be closely related to various dynamical processes in complex system, e.g. page access
and search in internet [13–16], lighting harvesting in cell [17,18]. A lot of activities have been devoted to calculating MFPT
for a lot of systems, such as regular lattices [19], the treelike T-fractals [20–22], the small world networks [23,24] and the
modular scale free graph [25,26].

According to the choice of starting node and the target node, those previous works about MFPT can be grouped into sev-
eral situations. For instance, the case of a fixed starting node [27,28] and the case of a given target node [29]. We focus on
the latter case in this paper, known as the partial mean first-passage time (PMFPT) when the target node is fixed and the
global mean first-passage time (GMFPT) when the target node is located uniformly. Since MFPT is also known as trapping
time (TT) when considering the target node as a trap [19] (which will absorb all walkers that visit it). We will use trap and
trapping time to describe the problem of random walk and MFPT below, respectively.

The past decades has witnessed an almost explosive development of polymer physics. As a representative network, den-
drimer (also called Cayley tree) [30–34] has extensive applications in different fields, including medicinal and diagnosis
[35,36], drug delivery system [37,38], light harvesting [39,40] and electronic applications [41]. Randomwalks on dendrimer
have been widely studied [42–45]. During the transport processes, the excitations are usually located on the chromophores
of dendrimer or the segments connecting the chromophores [46]. In the latter case, the underlying topology turns into the
dual structure of the dendrimer, which is derived by replacing each edge of the dendrimer by a node and connecting nodes
that represent adjacent edges in the corresponding dendrimer (as in Fig. 1). This structure is called Husimi cactus [47]. Some
authors have focused their attention on Husimi cactus and made many efforts, e.g. determining the complete spectra of
the network to study the dynamics on it [48,49], calculating the entropy of polydisperse chains placed on the structure [50],
studying the discrete-time quantumwalk-based search for amarked vertex [51], exploring continuous-time quantumwalks
on Husimi cacti and comparing with results on dendrimer [52], and solving a model of interacting self-avoiding walks [53].
In this work, we will focus on trapping process on Husimi cactus. Besides, the major difference between the structures of
dendrimer and Husimi cactus is that the former is a tree while the latter contains loops. The previous research showed that
the existence of loops has strong correlation with the dynamics of polymer networks [54–56], so that we also analyze the
influence of loop structure on trapping process by comparing the results of Husimi cactus with dendrimer.

The organization of this paper is as follows: in Section 2 we introduce the construction and some properties of Husimi
cacti. As previouslymentioned, we study in Section 3 the randomwalk problemwith a trap fixed at one of the central nodes,
and average over all possible starting nodes to obtain the exact formula of PMFPT to the trap. In Section 4 we turn to discuss
the case that the trap is uniformly selected among all nodes and derive the solution to GMFPT between all pairs of nodes.
From the results, we give the dependence relation of MFPT on the network order. Section 5 will conclude this paper.

2. Brief introduction to Husimi cactus

The Husimi cactus is the dual structure of a dendrimer (Cayley tree). So we introduce the construction of Cayley tree
first. From a central node emerge m branches, each of which ends with a new node. Then from each of these new nodes,
anotherm − 1 branches are created. Calling the central node the generation 0, one can perform iteratively from generation
g − 1 to generation g for any g > 1. Once given a Cayley tree, we can achieve a Husimi cactus by replacing each edge with
a node, and connecting all the nodes adjacent to each dendrimer node through a new edge. Let Hm,g (m ≥ 3, g ≥ 1) denote
the Husimi cactus after g iteration. Fig. 1 illustrates the construction process for a particular Husimi cactus, H3,5. Obviously,
distinct from dendrimers which are trees, the Husimi cacti have loops. For simplicity, we will discuss in detail the Husimi
cactus withm = 3 (also called triangular Husimi cactus) in this paper and use Hg to represent Husimi cactus alternatively.

Notice that in addition to dual graphs of dendrimers, Husimi cactus can be alternatively constructed in another approach.
Initially (g = 1),H1 is a triangle, in which there is a connection between each pair of nodes. ThenHg (g > 1) can be obtained
from Hg−1 as follows. For each outermost node (with its degree equals to 2) in Hg−1, two new nodes are created and linked
to the old one. Then we call the old node ‘‘parent’’ node, and two new nodes are named ‘‘child’’ nodes. And there is also an
edge introduced into the network to link the two child nodes.

By the construction, we categorize the nodes inHg into g levels according to the priority of their appearance. The original
three nodes (labeled with 1, 2 and 3 in Fig. 1) are at level 1, and the nodes generated at generation 2 are at level 2, and
so on. Furthermore, all the nodes in Hg can be divided into three branches (denoted by H(k)

g , k = 1, 2, 3) on their earliest
ancestor (as illustrated in Fig. 2). The original three nodes can be considered as root nodes of each branch and different
branches communicated through the connections between these root nodes. The second construction method emphasized
the hierarchical structure and self-similarity of Husimi cactus.

In light of the construction, there are N(i) = 3 × 2i−1 nodes (2i−1 ones in each branch) newly created at generation i.
Therefore the total number of nodes in Hg is

Ng =

g
i=1

N(i) = 3(2g
− 1). (1)

At the same time, each node created in generation i− 1 produces three new edges in generation i (i > 1). Thus the number
of newly created edges in iteration i isE(i) = 3N(i − 1) = 9 × 2i−2, and one can easily calculate out the total number of
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