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h i g h l i g h t s

• Information transmission reaches a maximum when the two cooperative systems are operating near a phase transition.
• An isolated system near a critical point displays ergodicity breaking over extended observation times.
• Ergodicity breaking is temporary.
• The aging time necessary to recover ergodicity depends on the finite size of the system.
• When the two complex systems are at criticality, information transfer happens through intermittent events instead of waves.
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a b s t r a c t

We study the problem of information transmission in complex cooperative systems to
prove that adaptivity rather than diffusion is the main source of information transport
at criticality. We adopt two different cooperative models, the two-dimensional Decision
Making Model (DMM), and the one-dimensional Flock Model (FM) inspired by the
cooperation between birds. The criticality-induced consensus is intermittently broken
by the occurrence of moments of high susceptibility, which we call free-will states. We
construct a network A based on the DMM and FM that is perturbed by a similar network B.
Some units of A, called lookout birds, follow the directions of the mean field generated by
B, while the rest are blind to B. When both networks are at criticality a small percentage of
lookout birds establish the synchronization between B and A as a result of the nonergodic
nature of the free-will state dynamics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The attractive concept of collective cognition [1] is closely connected to the problem of information transfer between the
individuals of an organized societywhile information transport is conjectured to becomemaximally efficient at criticality [2].
Recently much attention has been given to the role of criticality [3] in a wide range of complex systems, from bird flocks [4]
to social groups [5] to neural networks [6] and the brain [7]. At criticality, the short-distance links of Ising-like cooperative
models are converted into long-distance interactions, thereby going beyond locality, while turning a set of N virtually
independent units into an organized system behaving as a single individual with extended cognition [8,9].

The work of Ref. [10] shows that criticality generates weak ergodicity breaking [11] and renewal aging [12], two
concepts that are gaining popularity from single-molecule tracking experiments inside living cells [13,14]. Weak ergodicity
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breaking and renewal aging, concepts frequently ignored in conventional statistical physics, are currently challenging
theoreticians [15] to establish a new perspective of nonequilibrium statistical physics that may account for these important
properties frequently emerging in complex systems (see also Refs. [16–18]).

This article is devoted to illustrate how criticality-induced ergodicity breaking and locality violation lead to a form
of information transport not requiring the information waves frequently taken for granted (see for instance Refs. [1,4]).
Although in the long-time regime ergodicity and stationarity are recovered, this article shows that the free-will states
generate synchronization, operating on a much shorter time scale than equilibrium. The time distance between two
consecutive free-will states is described by a brand new nonstationary survival probability. The brand new distribution tells
how long we have to wait for a new event given that we start measuring the time at the instance of an event occurrence. In
the absence of an exponential long-time truncation, the brand new distribution would have the scale-free structure

lim
τ→∞

ψ(τ) =
const
τµ

, (1)

with µ < 2, thereby yielding ⟨τ ⟩ = ∞ and breaking ergodicity. The renewal aging is an important property of this ideal
scale-free case [15].

Real systems, including those discussed in this article, depart from this ideal condition, and the scale-free distributions
are usually truncated. In the case of this article the exponential truncation is caused by the finite size of the systems under
study. Therefore, the theory illustrated in this article refers to the case when the inverse power law distribution density of
Eq. (1) is truncated at time Td. As a consequence, through an extended renewal aging process, the complex systems tend
toward the stationary equilibrium correlation function, with a correlation time Tc that is very close to the truncation time
Td. The resilience of these systems to environmental influence is determined by this extended time region of regression to
equilibrium, thereby making the role of temporary aging as fundamental as the perennial aging of Ref. [15]. As we shall
see hereby, and as discussed in detail in Section 5.2, the long-time properties of synchronization are determined by the
nonstationary brand new distribution density and consequently are the result of a theoretical approach going beyond the
conventional stationarity assumptions.

The theoretical discussion of this article focuses on the cooperative model of Ref. [10], which leads with analytical
arguments toµ = 1.5. In the absence of truncation thewaiting time distribution densityψ(τ) of Eq. (1) becomes slower and
slower with age. We invite the readers to consult the recent paper of Ref. [19] to properly appreciate the fact that delaying
the beginning of an observation from the preparation time t = 0 to the time ta > 0 has the effect of making the decay of
ψ(τ) slower and slower upon increase of ta. As a result of truncation at time Td, as we shall see in Section 5.1, the mean time
ofψ(τ) and of the corresponding infinitely aged probability density becomes finite. We shall denote the mean time ofψ(τ)
as Tnew since it is a property of the brand new nonstationary probability distribution, and we will show there is a separation
of time scales in that Tnew ≪ Td. The effect of truncation is to turn the process of perennial aging into an aging process
with finite time duration. We restate that it is remarkable that the synchronization between the driven complex network
and the driving complex system, an important result of this paper, is realized during this extended process of transition to
equilibrium.

2. Cooperative models

We shall shed light into the criticality-induced properties mentioned in Section 1, locality breakdown and the nonequi-
librium origin of synchronization, by using two different cooperative models. The Decision Making Model (DMM) of Refs.
[10,20,21] and the Flock Model (FM) of Vicsek et al. [22] are both characterized by the occurrence of free-will states, and
have been used in an earlier publication to prove that criticality maximizes the efficiency of information transmission [8].
In both models the interaction between units is local, thereby naturally suggesting the existence of information waves that
this article proves to be inessential.

2.1. Decision making model

In the DMM, a single unit i has to make a choice between yes (State 1) and no (State 2), under the influence of its nearest
neighbors, according to the transition rates

g(i)1→2 = g exp

−K


N (i)1 − N (i)2


/N (i)


(2)

and

g(i)2→1 = g exp

K


N (i)1 − N (i)2


/N (i)


. (3)

N (i)1 and N (i)2 are the number of neighbors in State 1 and State 2 respectively, and the total number of neighbors is N (i). The
parameter g corresponds to the rate of information exchange between a unit and its nearest neighbors. The cooperation
strength is determined by K . Cooperation here means that if a unit has more neighbors saying yes, the transition rates are
biased so the unit is more likely to say yes as well, and similarly for no.

Throughout this paper g = 0.01 and the total number of units is set to N = 50× 50. The units of the DMM are the nodes
of a regular two-dimensional (2D) lattice of size LD = 50 with periodic boundary conditions, making N (i) = 4 for every unit.
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