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h i g h l i g h t s

• A speed feedback control mechanism was introduced into car-following system.
• The stability of traffic flow system under different feedback coefficients was discussed.
• The unit step response and phase margins were analyzed based on control theory.
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a b s t r a c t

A speed feedback control mechanism was introduced into the system to improve the
dynamical performance of the traffic flow. The modern control theory was used to
analyze the stability of the system. It is found that the stability region varies with the
feedback coefficient proportionally. In addition, the unit step responses in time domain
and phase–frequency curves in frequency domain were given with different feedback
coefficients in step response diagram and Bode diagram respectively. The overshoot
and phase margins are inversely proportional to the speed feedback coefficients in an
underdamped condition. The simulations were conducted to verify the validity of the
improvement. The conclusion can be drawn that the analytical result and the simulation
result are in good agreement with each other.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Some traffic flow models have been developed to describe the dynamical characteristics of the moving vehicles in the
past six decades [1–32]. Car-following model as one of microscopic ones has superiority in describing the motion of every
vehicle. Since it was proposed firstly by Pipes in 1953 [1] it was not improved for more 40 years until Bando et al. [2]
proposed an optimal velocity model in 1995. After that time, many physicists and scholars were attracted to study car-
followingmodel with different theory. Lenz et al. [3] extended Bando’s optimal velocity model with an anticipated term and
Nagatani et al. [4], Sawada [5] took the next-nearest-neighbor interaction into account in the Bandomodel. These improved
models were more realistically in describing the traffic jam in an unstable region. Jiang et al. [6] and Xue [7] discussed an
extended car-followingmodel with a consideration of the velocity difference between the current vehicle and its immediate
front one. They found that the velocity difference plays an important role in the phase transition and the traffic congestion.
Furthermore, Konishi et al. [8,9], Hasebe et al. [10,11], Ge et al. [12], Li et al. [13], Zhao et al. [14], Tang et al. [15–22], Zhu
et al. [23–26], and Peng et al. [29,30] creatively improved and analyzed car-following model with their own viewpoint. Due
to these scholars’ efforts traffic flow theory was promoted to a high level. Among these outstanding achievements Konishi

∗ Corresponding author. Tel.: +86 0531 88395289; fax: +86 0531 88395289.
E-mail address: zhuwenxing@sdu.edu.cn (W.-X. Zhu).

http://dx.doi.org/10.1016/j.physa.2014.07.030
0378-4371/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2014.07.030
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2014.07.030&domain=pdf
mailto:zhuwenxing@sdu.edu.cn
http://dx.doi.org/10.1016/j.physa.2014.07.030


344 W.-X. Zhu, L.-D. Zhang / Physica A 413 (2014) 343–351

Fig. 1. Illustration of the car-following system.

et al. [8,9] and Zhao et al. [14] mainly focused on analyzing the traffic flow system with a modern control theory. Based on
their ideas, Zhang et al. [31] introduced a PD (Proportional–Differential) term into traffic flow model and some new results
were obtained through analyzing car-following model by the use of the classical control theory. The performance of the
improved model was generally better than those of the previous models but a zero point was generated in the closed loop
transfer function because of the PD term. The stability of the traffic flow system was weakened due to the influence of the
zero point. In order to eliminate the influence of the zero point a speed feedback control term was used to take the place of
PD term in this paper. In the following part we will devote to showing the superiority of the speed feedback control to the
PD control for car-following model.

The remainders of this paper are organized as follows. In Section 2 themodel was improved and carefully investigated by
the use of the modern control theory. In Section 3, the improved model was analyzed with the time domain and frequency
domain methods. In Section 4, numerical simulations were carried out to verify the validity of the new model. In Section 5
the summary is given.

2. Model

Assume that all vehiclesmove one after one on a single lane roadwithout overtaking under periodical boundary condition
in an N-vehicle system (in Fig. 1). The road length is L m and xn(t) denotes the position of the nth vehicle at time t and
n = 1, 2, . . . ,N,N is the total number of the vehicles in the system. The headways of the nth and Nth vehicle at time t are
1xn(t) = xn+1(t)− xn(t) and 1xN(t) = L+ x1(t)− xN(t) respectively. Based on Bando’s optimal velocity model the motion
equation of the system is given,

ẍn(t) = a × [V (1xn(t)) − ẋn(t)] (1)

where a is the sensitivity of the driver generally a = 0.85 s−1, ẍn(t), ẋn(t) denote the acceleration and velocity of the nth
vehicle at time t , and V (1xn(t)) is the optimal velocity function (OVF) of the nth vehicle given as that in Ref. [32],

V (1xn(t)) =
vmax

2
× (tanh(c1 × (1xn(t) − sc) − c2) + tanh(c1 × sc + c2)) (2)

where vmax = 15.82 m/s, c1 = 0.13, c2 = 1.57, sc = 5 m which denotes the length of the vehicle.
In order to analyze the stability of the system we define the following steady state variables in the N-vehicle system in

Eq. (3)

[v∗

n(t), 1x∗

n(t)]
T

= [v0, V−1(v0)]
T (3)

where v∗
n(t) and 1x∗

n(t) represent the steady state velocity variable and steady state headway variable of the nth vehicle at
time t . v0 = vn(0) = V (L/N) denotes the homogeneous velocity of the system, V−1(v0) denotes the homogeneous headway
of the system.

Based on modern control theory, if we add small perturbation into the homogeneous traffic flow system, it can be
linearized around steady state as,

Ẋn(t) = AXn(t) + BUn(t)
Yn(t) = CXn(t) + DUn(t),

(4)

where Xn(t) is system state variable vector. Un(t) is the input variable vector and Yn(t) is the output variable vector. These
three variable vectors can fully describe the dynamics of traffic flow system.

Ẋn(t) =


d(ṽn(t))

dt
d(1x̃n(t))

dt

 , Xn(t) =


ṽn(t)

1x̃n(t)


, Un(t) = ṽn+1(t) (5)

where Yn(t) = ṽn(t), ṽn(t) = ṽn(t)−v0, ṽn+1(t) = vn+1(t)−v0, 1x̃n(t) = 1xn(t)−V−1(v0). A, B and C are the coefficient
matrices depending on car-following model. xn(t) and 1xn(t) are the same as the aforementioned and vn(t) is the velocity
of the nth vehicle at time t .

With linear system theory, we obtain one form of state space matrices from the coefficients in Eq. (1) which can be
rewritten as,

A =


−a aΩ
−1 0


, B =


0
1


, C =


1 0


, D = 0. (6)
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