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• Collision integrals for drag coefficient.
• Drag of disc.
• Drag of sphere.
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a b s t r a c t

Using an analogy between the density expansion of the transport coefficients ofmoderately
dense gases and the inverse-Knudsen-number expansion of the drag on objects in
nearly free molecular flows, we formulate the collision integrals that determine the first
correction term to the free-molecular drag limit. We then show how the procedure can be
applied to calculate the drag coefficients of an oriented disc and a sphere as a function of
the speed ratio.
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1. Introduction 1

The drag force on a solid object moving in a rarefied gas has been and remains a subject of great technological interest 2

[1–3]. An important parameter in the theory of rarefied gas flows is the Knudsen number Kn, which is the ratio of the mean 3

free path l of the molecules and a length R that characterizes the size of the object. The limit Kn → ∞ corresponds to the 4

free-molecular flow regime in which the drag is solely determined by the number of individual gas molecules striking the 5

object and the collision dynamics. The limit Kn → 0 corresponds to the continuum regime in which one needs to solve 6

the full nonlinear Boltzmann equation subject to the appropriate boundary conditions. A proper theory for the drag force at 7

arbitrary Knudsen numbers is an interesting and important challenge [3–9]. In the absence of reliable theoretical predictions, 8

one often resorts to empirical correlations [10]. 9

Here we consider the drag coefficient of objects in nearly free molecular flow, where the Knudsen number is large but 10

not infinite. As pointed out by Dorfman et al. [11–13], there is a close similarity between the density expansion of transport 11

coefficients of moderately dense gases and an expansion of the drag coefficient of objects around the free-molecular-flow 12

limit in terms of the inverse Knudsen number Kn−1. For instance, the viscosityµ of amoderately dense gas has an expansion 13
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in terms of the density n of the form [14]1

µ = µ0 + µ1n + µ′

2n
2 log n + µ′′

2n
2
+ · · · . (1.1)2

In this expansion the viscosity µ0 in the dilute-gas limit is determined by uncorrelated binary collisions between the3

gas molecules, the coefficient µ1 by correlated collision sequences among three molecules, and µ′

2 by correlated collision4

sequences among four molecules. The drag coefficient CD of an object is defined as5

CD =
F
UK

, (1.2)6

where F is the magnitude of the force exerted on the object and UK the incident kinetic energy. In the nearly free-molecular7

flow regime this drag coefficient has an expansion of the form8

CD = C0 + C1Kn−1
+ C ′

2Kn
−2 log Kn−1

+ C ′′

2 Kn
−2

+ · · · . (1.3)9

The expressions for the coefficients in the expansion of the drag coefficient can be obtained by applying a Knudsen-number10

iteration to the solution of the Boltzmann equation in the presence of the object [12,13]. One then finds that the expressions11

for the coefficients in (1.3) are related to the same dynamical events that determine the coefficients in (1.1), but with one12

of the molecules replaced with the foreign object. The expansion (1.3) is valid when the mean free path of the molecule isQ213

large compared to the size of the object in all three dimensions. When the mean free path is large compared to the size of14

the object in two dimensions, but not in the third dimension, for example, in the case of the drag on a cylinder or on a strip,15

a logarithmic dependence on the inverse Knudsen number already appears in the first correction to the free-molecular-flow16

limit, so that the expansion for the drag coefficient becomes [13,15–17]17

CD = C0 + C ′

1Kn
−1 log Kn−1

+ C ′′

2 Kn
−1

+ · · · , (1.4)18

again in analogy to the logarithmic density expansion of the transport coefficients of a two-dimensional gas [18,19]. In19

addition it should be noted that the coefficient C ′′

1 of the term linear in Kn−1 in (1.4) depends logarithmically on the flow20

velocity, so that expansion (1.4) is only valid for finite values of the flow velocity [13]. There exists a similar analogy between21

the density expansion of the transport properties of moderately dense gases and the density expansion of the friction22

coefficient of a Brownian particle [20].23

The present paper will only deal with the drag on objects whose size is small in all directions compared to the mean24

free path, so that the first correction to the free-molecular drag force is linear in Kn−1 in accordance with (1.3). The specific25

purpose of the present paper is to formulate the collision integrals that determine the amplitude C1 of the first inverse-26

Knudsen-number correction to the free-molecular flow drag and then show how they can be evaluated to determine the27

magnitude of this correction for a disc oriented perpendicular to the flow and for a sphere as representative examples. In28

principle, our method of calculating the drag coefficient from collision integrals can be applied to objects of any shape and29

for any interactions of the gas molecules with the solid surface of the object. In practice we shall introduce a number of30

simplifying approximations:31

• The molecules that strike the object do not stick to it, but are re-emitted after a time short compared to the mean free32

time of the molecules.33

• The molecules are re-emitted diffusively with a temperature T corresponding to the temperature of the object, which is34

assumed to be the same as the temperature of the molecules in the gas stream.35

• The molecules in the gas stream have a massm and interacts with short-ranged repulsive forces of range σ .Q336

• The solid object is convex (non-concave), so that a molecule emitted from the surface of the object cannot strike the37

object unless it first collides with another molecule.38

The drag force on the object not only depends on the Knudsen number, but also on the Mach number M , defined as the39

ratio of the magnitude of the flow velocity V and the sound velocity. Instead of the Mach number, we shall use the speed40

ratio, which is the ratio of V and the thermal molecular velocity:41

S = V (m/2kBT )1/2 , (1.5)42

where kB is Boltzmann’s constant. The speed ratio is directly proportional to the Mach number as S = M (γ /2)1/2, where γ43

is the ratio of the isobaric and isochoric heat capacities [1].44

As in the case of the collision integrals appearing in the density expansion of the transport coefficients of moderately45

dense gases [21,22], we find it convenient to represent the molecular collisions and the interactions of the molecules with46

the solid object by binary collision operators to be defined in Section 2. Using then an expansion in terms of these binary-47

collision operators, we formulate in Section 3 the specific collision sequences that contribute to the first correction of the48

drag force beyond the free-molecular flow limit. The explicit expressions for the relevant collision integrals are presented49

in Section 4. As representative examples, we evaluate these collision integrals for the drag coefficient of a disc in Section 550

and for a sphere in Section 6. A brief summary of our results is presented in Section 7.51
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