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h i g h l i g h t s

• We consider the bond-diluted long-range percolation problem on a linear chain.
• Dilution of nodes, which is also considered, competes with long-range connectivity.
• The percolation order parameter only depends on the average connectivity.
• The average connectivity is explicitly computed in terms of the free parameters.
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a b s t r a c t

We study the very long-range bond-percolation problem on a linear chain with both node
and bond dilution. Very long-rangemeans that the probability pij for a connection between
two nodes i, j at a distance rij decays as a power-law, i.e. pij = ρ/[rα

ij N
1−α

]when α ∈ [0, 1),
and pij = ρ/[rij ln(N)] when α = 1. Node dilution means that the probability that a node
is present in a site is ps ∈ (0, 1]. The behavior of this model results from the competition
between long-range connectivitywhich enhances the percolation, and node dilutionwhich
weakens percolation. The case α = 0 with ps = 1 is well-known, being the exactly
solvablemean-fieldmodel. Thepercolation order parameter P∞ is investigatednumerically
for different values of α, ps and ρ. We show that in all range α ∈ [0, 1] the percolation
order parameter P∞ depends only on the average connectivity γ of the nodes, which can
be explicitly computed in terms of the three parameters α, ps and ρ.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the last fifty years, percolation theory has brought new understanding and methods to a broad range of topics in
physics like materials science, complex networks, surface roughening, epidemiology, geography, and fire propagation (see
Refs. [1,2] for a review). This theory was first considered for the optimization of masks supplied to the miners in the coal
pits needing a protection which could block poisoning materials, while permitting the passage of air. In other words, it was
needed an appropriate dosage of porosity of the material which composed the masks in order to have connected path for
air and unconnected path for poisoning materials. After that, the theory was applied to the study of movement and filtering
of fluids through porous materials (the most familiar phenomena probably being coffee percolation) and its scope has been
progressively extended to all other domains [3–5].
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Nowadays, percolation is still a very active field of research in physics and applied to an always increasing number of
phenomena as, for example, fluid flow in random media [6], dielectric breakdown [7] and reaction–diffusion processes in
two-dimensional percolating structures [8].

Percolation models have also been increasingly adopted for many phenomena besides physics to understand important
features of chemical, biological and social systems. Many of them form complex networks, whose vertices are the elements
of the system andwhose edges represent their interactions. For example, living systems form a huge genetic networkwhose
vertices are proteins, while the edges represent their chemical exchanges [9]. Equally complex networks occur also in social
science, where the vertices are individuals, organizations or countries and the edges characterize their social contacts [10].
Moreover, the effects of the complex connectivity of biological systems can be also studied by percolation theory. Recent
advances in this field points to universal laws and offer a new conceptual framework that could potentially revolutionize
our view of biology [11].

The effect of long-range connections on percolation is of fundamental interest, since they give rise to a variety of new
interesting dynamical and thermodynamical phenomena. In view of that, long-range models have been intensively studied
in recent times in different contexts [12–18]. The phenomenology becomes very interesting when long-range connections
appear together with node dilution. In this case, in fact, there is competition between long-range connectivity which
enhances percolation and node dilution which weaken it [19–21].

In this work we investigate the very long-range percolation problem on a linear chain with both node and bond dilution.
Very long-range means that the probability pij of a connection between two nodes i, j at a distance rij decays as a power-
law, i.e. pij = ρ/[rα

ij N
1−α

] when α ∈ [0, 1) and pij = ρ/[rij ln(N)] when α = 1. Node dilution means that the probability
that a node is present in a site is ps ∈ (0, 1]. Notice that for this very long-range models, in order to obtain the correct
thermodynamic limit, it is compulsory to assume that the probability of a connection decays with the size N of the system
as 1/N1−α (or as 1/ ln(N) in case α = 1).

The case α = 0, with ps = 1, is well-known, being the exactly solvable mean-field model, while the case α = 0 with
ps < 1 is its almost trivial extension. In the other regions, the percolation order parameter P∞ is investigated numerically
for different values of α, ps and ρ. Intuitively, one expects the percolation order parameter P∞ be reduced by the dilution of
nodes [19,20]. Indeed, we will show not only that this is true, but we also show that in all range α ∈ [0, 1], the percolation
order parameter P∞ depends only on the average connectivity γ of nodes, whichwe explicitly compute in terms of the three
parameters α, ps and ρ.

In other words, given γ = γ (α, ρ, ps), P∞(γ ) is always the same function, independently on the values of α, ρ and
ps. We stress that this result is not only true at the transition, but for all possible values of γ . Therefore, not only we state
that the model is the universality class of mean-field bond-percolation (it would be an almost trivial result being it well
known when node dilution is absent) but we prove that spatial structures are irrelevant for all values of parameters, being
the average connectivity the only relevant aspect.

The paper is organized as follows: In Section 2 we consider the simple case α = 0 in the absence and in the presence of
dilution. Sections 3 and 4 discuss the cases α ∈ (0, 1) and α = 1 respectively. Finally, our conclusions are in Section 5.

2. Mean-field (α = 0)

The percolation order parameter P∞ is defined as the fraction of nodes of the system that belongs to the infinite cluster.
Obviously, P∞ attains its maximum value (P∞ = 1) when all the nodes are in the infinite cluster, whereas P∞ = 0 below a
certain threshold, when the infinite cluster is absent.

A particularly simple model is the mean-field, which corresponds to α = 0. We describe below this almost trivial case,
first when only bonds are diluted, and afterwards considering dilution for both nodes and bonds.

2.1. Mean-field (bond diluted)

In mean-field bond diluted model (α = 0, ps = 1), one assumes that there are N nodes. Any pair of nodes is connected
(closed bond) with probability ρ/N and unconnected (open bond) with probability 1 − ρ/N .

The average connectivity γ of a given node (the average number of connections of a node to the remaining N − 1 nodes)
is given by

γ =
ρ

N
(N − 1) ≃ ρ. (1)

This number is simply obtained bymultiplying the numberN−1 of remaining nodes by the probability that a bond is closed.
Let us call P∞ the fraction of nodes in the giant component (number of nodes in the giant component divided by the total

number of nodes N), which can also be seen as the probability that a node belongs to the giant component itself. The order
parameter P∞ satisfies the self-consistency equation (see, for example, Ref. [22,23])

exp(−γ P∞) = 1 − P∞, (2)

whose solution P∞(γ ) is depicted in Fig. 1. The critical value of the control parameter is γc = 1.
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