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h i g h l i g h t s

• Coritivity theory is applied to influence maximization problem.
• The influence spread using Coritivity algorithm is satisfactory.
• The convergence rate in Coritivity method is excitingly fast.
• Reasons of different performances of various algorithms are analyzed.
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a b s t r a c t

Influence maximization problem is about finding a small set of nodes from the social
network as seed set so as to maximize the range of information diffusion. In this paper, the
theory of coritivity and method of finding core nodes in networks are introduced to deal
with this problem. From the perspective of network structure, core nodes are the important
ones to network connectivity and is a competitive measurement of node influence. By
finding the core of the network through coritivity we can finally get the initial active nodes
required in the influence maximization problem. We compare this method with other
conventional node-selection approaches in USAir97 and HEPTH datasets. Experimental
results demonstrate that: (a) the coritivity-based method achieves large influence spread
in all the diffusion models we use, and (b) the proposed method converges fast in all cases
we consider.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As one aspect of social network analysis, the study of information diffusion is of great value. With good knowledge of the
mechanism in which beneficial message propagates through the network, we can better understand how to make it spread
more widely or more quickly. Getting to know how the harmful information diffuses helps us to detect it early or effectively
prevent it from large-scale spread.

The problem we study here is the information maximization problem. We use graph to model the social network. Each
individual is represented as a node and edges stand for relationships between them.When one piece of information appears
in the network, it can pass from one node to another through the edges between them. The information maximization
problem is about how to select k nodes from the network as the initial active node set S and then propagate through the
network such that we can get themost active nodes σ(S) at the end of the diffusion. The solution of this problem can help us
to achieve the best diffusion result with the least effort. Thus it has essential practical value, such as in product promotion.

To solve the influence maximization problem, researchers have done pretty much work. After Pedro Domingos andMatt
Richardson [1,2] first studied the influence maximization problem as an algorithmic problem with probabilistic method,
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David Kempe et al. [3] systematically formulated it as a discrete optimization problem. They came up with the greedy
algorithm to get the approximately optimal solution. However, the way to get the scope of diffusion in the primary greedy
algorithm is not efficient. To solve this issue, Jure Leskovec [4] put forward the ‘‘lazy-forward’’ method to speed up the
process. Masahiro Kimura [5] presented SPM and SP1M based on IC model to efficiently calculate the scope of diffusion.
Wei Chen [6] also put forward MIA and PMIA model for the similar purpose. Community-based [7] and path-based [8]
methods are proposed as well. On the other hand, heuristic methods are also used to tackle the influence maximization
problem.Wei Chen [9] came upwith the ‘‘Degree Discount’’ method in independent cascademodel (ICM) that improves the
computing efficiency effectively and produces a diffusion result close to that of the greedy. Qingye Jiang [10] utilized the
simulated annealing to heuristically get the requested nodes. Kyomin Jung [11] proposed the IRIE (Influence Rank Influence
Estimation) method to tackle the problem scalably and robustly.

Besides, there are also methods that rank the node influence according to the individual nodes’ structural attributes.
For example, betweenness and distance centrality are simple measures of this kind. But they suffer from the intersections
between the selected nodes’ influence range. Therefore, many heuristics are proposed to improve the results. Linyuan Lu
etc. [12] proposed the LeaderRank algorithm based on PageRank to suit it better to the social network. Bonan Hou etc. [13]
combined the measure of degree, betweenness centrality together with k-core and came up with the notion of all-around
nodes. An Zeng and Cheng-Jun Zhang [14] presented theMDDmeasure based on the k-shellmethod to improve the diffusion
results. Jian-Guo Liu etc. [15] took into account the shortest distance from a target node to node set with highest k-core and
further differentiated between the nodeswith the same k-core value. Duan-Bing Chen etc. [16] took the clustering coefficient
into consideration and proposed the ClusterRank algorithm.

In this paper, we propose a novel method based on coritivity theory to deal with the influence maximization problem.
Coritivity is one measure of the network connectivity and reflects the network structure. Therefore, it can be utilized to
measure the nodes’ influence in diffusing information to some extent. So we can apply the coritivity theory to the influence
maximization problem to get k initial active nodes. Our contributions are mainly as follows:

(a) The proposed method performs well in diffusion range as well as convergence rate. As far as we know, we are the first
to utilize the coritivity theory to handle the influence maximization problem.

(b) We analyze the reasons for different performances of the node-selection methods in detail through comparisons.

The rest of this paper is organized as follows: in Section 2, we formulate the basic concepts and ideas in coritivity theory
that will be used in our algorithms; Section 3 is about the detailed algorithms regarding how to get the core of a network
and then the k initial active nodes; Section 4 deals with the diffusion models we use in this paper; in Section 5 we provide
the experimental results, show and analyze the performances of different node selection methods; in Section 6, we analyze
the limitations of our method and propose some optimizations; in the last part, we make the conclusion and point out our
future directions of study.

2. Basic coritivity theory

In real networks, there are always some entities locating at important positions or playing crucial roles. Removing these
entities will lead the network to an unstable state. These entities are called cores of the network. To study cores and their
effect, we introduce coritivity theory into networks.

Coritivity theory measures the importance of a set of nodes by the number of connected components showing up after
deleting the nodes and their incident edges from the graph. Given an undirected unweighted connected graph G, with V (G)
and E(G) representing the node set and the edge set, the coritivity of graph G, h(G), is defined as

h(G) = max{ω(G− S)− |S|; S ∈ C(G)} (1)

where C(G) denotes the collection of cut sets of G, and ω(G− S) is the number of components of graph G− S. For S ⊆ V (G),
G − S denotes the graph obtained by deleting from G node set S together with all edges incident with any node in S. |S|
stands for the number of nodes in S. Moreover, if S ′ ∈ C(G) and satisfies

h(G) = ω(G− S ′)− |S ′|. (2)

S ′ is called a core of graph G. This definition of core and coritivity implies that each network has a unique coritivity value
but may have many different cores. Each core is a cut set that satisfies Eq. (2).

Coritivity is a measurement to quantify the importance of the core in networks. Naturally, given a network, the most
fundamental problem is to calculate the core and coritivity. Thus, we will introduce some notions that is necessary for
working out the coritivity. Again, given any undirected, unweighted and connected graph G, S is a core of G. Note that S is a
set of nodes, not one specific node. Then if S∗ is a non-empty subset of S, we call S∗ a subcore of graph G. Moreover, if S∗ " S,
then S∗ is a real subcore of graph G and we call S − S∗ a complementary core of real subcore S.

Another useful notion in coritivity theory is generalized hanging node. We use the symbol N(v) to denote the neighbor
node set of any node v. For node set S, we call any node v a generalized hanging node of S, ifN(v) ⊆ S. The set of generalized
hanging nodes of a subset S in graph G, Γ +(S), is defined as Γ +(S) = {v; v ∉ S,N(v) ⊆ S}. Lastly, to introduce a notion,
normal subcore, which is quite useful for the coritivity algorithms in the next section, we give a theorem about the relation
between core and subcore.
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