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h i g h l i g h t s

• A morphological transition in the distribution function of a relativistic gas marks the transition from classical to relativistic behavior.
• We reformulate this transition in the language of thermodynamic theory of phase transition.
• We calculate critical exponents and the critical temperature.
• Relativistic constraint leads to emergence of order parameter as themost probable velocity becomes non-zero in the relativistic regime.
• The case of quantum statistics is also considered with their possible implications for real physical systems.

a r t i c l e i n f o

Article history:
Received 30 January 2014
Received in revised form 25 May 2014
Available online 24 June 2014

Keywords:
Relativistic gas
Jüttner distribution
Phase transitions
Mean-field theory

a b s t r a c t

Recently, amorphological transition in the velocity distribution of a relativistic gas has been
pointed out which shows hallmarks of a critical phenomenon. Here, we provide a general
frameworkwhich allows for a thermodynamic approach to such a critical phenomenon.We
therefore construct a thermodynamic potential which upon expansion leads to Landau-
like (mean-field) theory of phase transition. We are therefore able to calculate critical
exponents and explain the spontaneous emergence of ‘‘order parameter’’ as a result of
relativistic constraints. Numerical solutions which confirm our thermodynamic approach
are also provided. Our approach provides a general understanding of such a transition as
well as leading to some new results. Finally, we briefly discuss some possible physical
consequences of our results as well as considering the case of quantum relativistic gases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As early as 1911, F. Jüttner provided a relativistic generalization of the famous Maxwell–Boltzmann (MB) velocity
distribution whose Gaussian form does not respect themaximal velocity of light, c. He used entropymaximization principle
under relativistic energy–momentumconservation constraints to arrive atwhat is nowknown as the Jüttner distribution [1].
For small enough temperatures where the typical velocities are small, the Jüttner distribution reduces to the classical MB
distribution while for high temperatures the relativistic constraints forces it to take on a very different form. Although the
validity of the Jüttner distribution has been a source of some controversies [2–7], it has been recently established as the
correct relativistic velocity distribution [8–14]. However, one important question still remains: what is the temperature
scale that determines whether a gas is relativistic or classical? A simple answer may be θ ≡ mc2/kBT ≈ 1 where clearly
θ ≫ 1 is the classical and θ ≪ 1 the ultra-relativistic limits. Recently, it has been suggested that the Jüttner distribution
exhibits a morphological transition at θc = d + 2, where d is the spatial dimension of the relativistic gas [15]. That is, for
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θ > θc the distribution function has a classical form while for θ ≤ θc it starts to exhibit an increasingly different form from
the classical limit. While this transition temperature is much lower than naive expectation, the more interesting result was
that such a transition exhibits some similarity to thermodynamic phase transitions with corresponding (d-independent)
critical exponents [15]. However, no reasoning was given as to the origin of such a critical phenomenon. For example, why
are the exponents d-independent? What is the physical significance of the order parameter? Is there a singular behavior (a
true hallmark of criticality) as in a ‘‘generalized susceptibility?’’ Is there a symmetry breaking principle which causes such
a phase transition? In the present work, we provide a general framework which connects the Jüttner distribution with the
thermodynamic theory of phase transitions as described by the Landau theory. In doing so, not only we provide a general
framework, we also provide simple answers to the above questions. We also note that such a transition and its physical
properties may have important consequences in real world systems for which θ . 1, which is not necessarily a very high
temperature, for example in graphene as clearly explained in Ref. [15]. However, relativistic astrophysics [16,17] and high
energy physics (e.g. quark–gluon plasma [18,19]) are also two important areas of active research where such results may
have important consequences. In the following we use natural units, c = kB = 1, and setm = 1 without loss of generality.

2. Results

Our starting point is a simple observation that in statistical mechanics, equilibrium distributions are related to the
thermodynamic potentials via the relation f = e−F , thus giving F = − ln f , e.g. f =

1
Ω

in the entropy representation
where all Ω micro-states are equally likely [20]. We therefore simply build such a generalized thermodynamic function
using the Jüttner distribution and use it to calculate various thermodynamic relations. The Jüttner distribution is given by
Refs. [9,10]:
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where γ (v) = (1 − v2)−
1
2 is the Lorentz factor and u = |u⃗| is the average velocity, i.e., u⃗ = ⟨v⃗⟩ which is taken to be zero in

the co-moving frame, and A is a normalization constant. µ is the chemical potential and λ = +1, −1, 0 distinguishes the
Fermi, Bose and Boltzmann statistics. For simplicity we set µ = λ = 0 here. This leads to:

F(v⃗, u⃗, T ) = − ln f = − ln

Aγ −1(u)


− (d + 2) ln γ (v) +


1 − u⃗ · v⃗

T
γ (v)γ (u)


. (2)

Noting that u, v ≤ 1 and that typically u ≪ 1, we Taylor expand the above expression thus obtaining,
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Clearly, this has the same form as the Landau functional:

G(φ, h, T ) = g(h, T ) + a(T )φ2
+ b(T )φ4

− hφ, (4)
which describes the mean-field theory of critical phase transition at a temperature given by a(Tc) = 0, in the absence of
‘‘conjugate field’’, h. This immediately gives the result Tc = 1/(d + 2), consistent with the previous study [15]. Fig. 1 shows
the Jüttner function and the corresponding thermodynamic function F = − ln f for various temperatures for d = 1. Note
that the morphological transition corresponds to the appearance of new stable minima in the thermodynamic function.
Accordingly, thermodynamic properties are obtained by entropy principle which extremizes the thermodynamic potential,
leading to
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which (for u = 0) gives:

vmp =
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0; t < 0

±
√
2t;

1
2

> t > 0
(6)

where vmp is the most probable velocity and t ≡ (T − Tc)/Tc , and the upper limit on t is due to the constraint that v ≤ 1.
Comparing the above with the general Landau theory of phase transition, one immediately realizes that vmp is the order

parameter associated with a continuous (second-order) phase transition which occurs at T = Tc = 1/(d+2) in the absence
of the conjugate field u. Several thermodynamic relations follow immediately [21]:

vmp ∼ (T − Tc)
1
2 ; (T & Tc) (7)

vmp ∼ u
1
3 ; (T = Tc) (8)
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