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h i g h l i g h t s

• Aggregation kinetics model by additive rules for 2 cases (pile-ups and walls).
• Scaling laws depend on morphology: diffusive – for pile-ups, linear – for walls.
• Transition between them is caused by the boundary effect.
• Scaling of the cumulative distribution function allows us to find them in experiments.
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a b s t r a c t

The idealized general model of aggregate growth is considered on the basis of the simple
additive rules that correspond to a one-step aggregation process. The two idealized
cases were analytically investigated and simulated by the Monte Carlo method in the
Desktop Grid distributed computing environment to analyze ‘‘pile-up’’ and ‘‘wall’’ cluster
distributions in different aggregation scenarios. Several aspects of aggregation kinetics
(change of scaling, change of size distribution type, and appearance of scale-free size
distribution) driven by the ‘‘zero cluster size’’ boundary condition were determined by
the analysis of evolving cumulative distribution functions. The ‘‘pile-up’’ case with a
minimum active surface (singularity) could imitate piling up aggregations of dislocations,
and the case with a maximum active surface could imitate arrangements of dislocations
in walls. The change of scaling law (for pile-ups and walls) and availability of scale-free
distributions (forwalls)were analytically shownand confirmedby scaling, fitting,moment,
and bootstrapping analyses of simulated probability density and cumulative distribution
functions. The initial ‘‘singular’’ symmetric distribution of pile-ups evolves by the ‘‘infinite’’
diffusive scaling law and later it is replaced by the other ‘‘semi-infinite’’ diffusive scaling
law with asymmetric distribution of pile-ups. In contrast, the initial ‘‘singular’’ symmetric
distributions of walls initially evolve by the diffusive scaling law and later it is replaced
by the other ballistic (linear) scaling law with scale-free exponential distributions without
distinctive peaks. The conclusion wasmade as to possible applications of such an approach
for scaling, fitting, moment, and bootstrapping analyses of distributions in simulated and
experimental data.
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1. Introduction

Many aggregation phenomena in natural processes take place by exchange of solitary agents (monomers) between their
aggregates (clusters): phase ordering [1], atom deposition [2], stellar evolution [3], growth and distribution of assets [4],
and city population even [5]. In materials science the hierarchical defect substructures that were observed experimentally
in deformed metals and alloys appear as a result of some aggregation processes among solitary crystal defects. As a result,
the hierarchical defect substructures can demonstrate the self-affine geometry on many scales. In fact, the fractal analysis
of fractured surfaces by projective covering and box-counting method shows that the fractured surface can be depicted not
only by one fractal dimension, but also by the multifractal spectrum [6–8]. At the same time, surface roughness profiles of
periodically deformed Al [9–11], slip line morphology in Cu [12,13], and dislocation patterns in Cu after tensile [14] also
demonstrate the self-similar features on many scales. Recently, transition from the homogeneous dislocation arrangement
to the scale-invariant structurewas described by the statistical model of noise-induced transition [15]. Several othermodels
and theories were proposed to explain the scale-invariant behavior of crystal defect aggregations [16] that possibly lead to
the self-affine geometry of fractured surfaces [17].

The generalmodel of aggregate growth on the basis of the simple additive rules that correspond to a one-step aggregation
process and its scaling properties are of great interest in this physical context. In such one-step aggregation processes
monomers can leave one cluster and attach to another. Usually these exchange processes are described by an exchange
rate kernel K(i, j), i.e. by the rate of transfer of monomers from a cluster of size i (detaching event) to a cluster of size j
(attaching event). Generally, the rate of monomer exchange between two clusters depends on their active interface surfaces
that are dependent on their sizes, morphology (line, plane, disk, sphere, fractal, etc.), probability of detaching and attaching
events, etc.

Sometimes there is a preferable direction for exchanges, i.e. with asymmetric exchange kernels, K(i, j) ≠ K( j, i), like
in coalescence processes in the Lifshitz–Slyozov–Wagner theory [1], where big clusters ‘‘eat’’ smaller ones. The exchange
rate kernel K(i, j) is defined by the product of the rate at which a monomer detaches from a cluster of size i and the rate at
which this monomer reaches another cluster of size j.

In the Leyvraz–Redner scaling theory of aggregate growth [5] cities Ai of size i evolve according to the following rule:

Ai + Aj
K(i;j)
−→ Ai−1 + Aj+1, (1)

where K(i, j) is the exchange rate. That is, a monomer (one person) leaves some of the cities Ai of population i and arrives at
some of the cities Aj of population j. This can be considered as the generalized rule for the theory of growth and distribution
of assets [4], if one can assume that Ai are persons with asset volume of i.

Below, the idealized general model of aggregate growth is proposed on the basis of this approach. The main aim of
the work is to use the most profound features of aggregation kinetics and to find the simplest factors that can cause the
observed self-affine properties of the aggregating system of solitary agents (monomers) and their aggregates (clusters).
In this context, the numerous complex details of the real crystal defect aggregation processes will be hidden behind the
idealized and simplified conditions only to emphasize the most general precursors of the scale-invariant behavior of such
complex systems.

2. Model

Here detaching and attaching processes are considered separately that in the general case could be characterized by
different rates. The proposedmodel significantly differs by this aspect from the other well-known aggregationmodels in the
Leyvraz–Redner scaling theory of aggregate growth [5], the Ben-Naim–Krapivsky theory for exchange driven growth [18],
the Lin–Ke theory for migration-driven aggregation [19–21], where detaching and attaching processes are considered
together in the formalism of the linked Smolukhovski nonlinear equations [22]. Consequently, the different detach product
kernel Kd(n) = kdS (n) and attach product kernel Ka(n) = kaSa (n) are taken into account, where kd and ka are the measures
of activation of detaching and attaching processes, and n is the number of monomers in a cluster. In natural processes kd
is usually determined by the energy barrier for detachment from a cluster and ka, by the probability for attachment of a
migrating monomer to another cluster which is in turn determined by the kind of migration (instant hops from cluster to
cluster, ballistic motion, random walking, or their combinations). Sd (n) = sdnα and Sa (n) = sanβ are the active surfaces
of clusters, where α and β are the exponents depending on the morphology of the cluster (for example α = 1 for linear
clusters and α = 2/3 for spherical clusters, and α = β in the simplest case of clusters with the same morphology), and sd
and sa are the constants depending on the morphology of the cluster and the geometry of the neighborhood (for example
sd = 1 for linear aggregates and sd =

3√36π for spherical aggregates, and sd = sa = s in the simplest case of clusters with
the same morphology and neighborhood). The portion of clusters f (n, t) with n monomers at time t evolves according to
the following equation:

∂ f (n, t)
∂t

= Kd(n + 1)f (n + 1, t) + Ka(n − 1)f (n − 1, t) − Kd(n)f (n, t) − Ka(n)f (n, t). (2)
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