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h i g h l i g h t s

• Hamilton–Jacobi and Fokker–Planck equations are equivalent for harmonic oscillators.
• Extremal action supplies the solution of both equations.
• The problem in presence of a magnetic field is explicitly solved.
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a b s t r a c t

Using Feynman’s path integral formalism applied to stochastic classical processes, we show
the equivalence between theHamilton–Jacobi (HJ) and Fokker–Planck (FP) equations, asso-
ciated with an overdamped Brownian harmonic oscillator. In this case, the Langevin equa-
tion leads to a Gaussian Lagrangian function and then the path integration which defines
the conditional probability density can be replaced by the extremal path. Due to this fact
and following the classical dynamics formalism, we prove the strict equivalence between
the HJ and FP equations. We do this first for an ordinary Brownian harmonic oscillator and
then the proof is extended to an electrically charged Brownian particle under the action
of force fields: magnetic field and additional time-dependent force fields. We observe that
this extremal action principle allows us to derive in a straightforward way not only the HJ
differential equation, but also its solution, the extremal action.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction 1

Feynman’s path integral formalism (FPIF) [1] has been a useful tool to describe a variety of systems in the nonequilibrium 2

statistical mechanics. It continues to be a very useful method in the study of classical [2–5] and quantum Brownian mo- 3

tion [6,7]. Between the eighties and nineties, the formalismwas used to characterize the noise-induced linear and nonlinear 4

stochastic dynamics driven by Gaussian colored noises [8]. The path integral formalism and its connectionwith the Hamilto- 5

nian dynamics has also been explored and applied to other situations where the stochastic fluctuations play a fundamental 6

role [9]. In particular, in Ref. [10] aHamiltonian formalismwas given for a second order Langevin equationwhere an extremal 7

action is formally written in terms of the nonlinear Hamilton equations. Due to the nonlinearity the expression for the ex- 8

tremal action in general is not easy to evaluate explicitly. Otherworks that use theHamiltonian dynamics focusmainly on the 9

probability distributions in the steady state, which are the time-independent solutions of the FP equations. It is shown that 10

in the weak-noise limit of the steady state distribution, the FP equation reduces to a Hamilton–Jacobi-like equation [9,11]. 11
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From quantum mechanics point of view, it would be worth to comment that the FPIF was also used to obtain explicitly the1

Schrödinger equation from the Hamilton–Jacobi equation [12]. However, to the best of knowledge the explicit equivalence2

between the HJ and FP equations has not been reported in the literature even for linear equations. Our main contribution in3

this work is to use also the FPIF to show the equivalence between the HJ and FP equations for an overdamped Brownian har-4

monic oscillator, which satisfies a Langevin equation with additive Gaussian white noise (thermal noise). The equivalence is5

first proven for an ordinary Brownian harmonic oscillator (OBHO) and thenwhen the oscillator is electrically charged, under6

the action of force fields: magnetic field and time-dependent force fields [13–17]. The Lagrangian is Gaussian in both cases7

which allows us (as a necessary condition) to replace the sum over paths by the extremal path [1]. With the extremal action8

defined in a formal way we follow the Hamiltonian formalism to obtain both, the extremal action by solving the Hamilton9

equations and also theHJ equation as a partial differential equation for that function. Once theHJ equation has been obtained10

in both cases, we show that it is totally equivalent to the FP equation through the relationW (x, t|x0) = N(t) exp(−S[x̄]/4λ),11

where W (x, t|x0) is the transition probability density (TPD) associated with the FP equation, S[x̄] is the extremal action as-12

sociated with the extremal path x̄, and N(t) is the normalization factor [18,19]. It must be noticed that the extremal action13

S is calculated for all time t ≥ 0 and as a consequence the probability density W is also given for all time t ≥ 0. Therefore,14

the equivalence means that the HJ equation is obtained from the FP equation not in the asymptotic regime but for all time15

t ≥ 0; besides the former equation does not mean a small-noise limit of the latter. The explicit expression for the extremal16

action gives the immediate solution of the FP equation. As a matter of fact, this approach which yields the extremal action17

from the Hamilton equations, constitutes an alternative way to obtain the solution of the FP equation.18

Thiswork is then outlined as follows: in Section 2,we study the formalismof the extremal action and its correspondingHJ19

equation for an overdamped OBHO in the one dimensional case. The necessary and sufficient condition for the equivalence20

between the HJ and FP equations is established. Once the extremal action is calculated, the well known solution of the FP21

equation is easily verified. In Section 3,we extend the formalismof Section 2 to the case of an overdamped charged Brownian22

harmonic oscillator (CBHO) in the presence of a constant magnetic field only. In this case, the equivalence between the HJ23

and FP equations is established by a similar condition as in the OBHO. Also the solution of the FP equation is immediately24

obtained. The problem of an overdamped CBHO in the presence of additional time-dependent force fields is studied in25

Section 4. Our concluding remarks are given in Section 5, and at the end of our work two Appendices are included for26

explicit calculations.27

2. Extremal action and HJ equation for an OBHO28

We start from a stochastic differential equation (SDE) given by a Langevin equation for a free harmonic particle in one29

dimension in the non-inertial regime (overdamped approximation)30

γ ẋ + ω2x = ξ(t), (1)31

where γ = α/m is the friction coefficient α per unit mass, ω2
= k/m the oscillator’s characteristic frequency, and ξ(t) the32

noise per unit mass. Let us assume a Gaussian noise with zero first moment and delta correlation function33

⟨ξ(t)ξ(t ′)⟩ = 2λ δ(t − t ′), (2)34

where λ is the noise intensity which satisfies the fluctuation–dissipation relation λ = γ kBT/m, with kB the Boltzmann con-35

stant and T the temperature of the surrounding medium (the thermal bath). In order to calculate the extremal action of this36

problem, we follow Feynman’s functional formalism [1] for a stochastic process. Due to the fact that this stochastic differen-37

tial equation is linear with additive noise, it turns out that noise probability distribution has a one-to-one correspondence38

with the distribution of the dynamical variable x(t). Taking into account the Gaussian character of the noise, then we start39

from a Lagrangian function which represents the systematic part of the Langevin equation.140

L(ẋ(t), x(t)) = (γ ẋ + ω2x)2, (3)41

and the action functional reads42

S[x(t)] =

 t2

t1
L(ẋ(t), x(t)) dt. (4)43

The integral is evaluated along a path x(t) with fixed end points (x1, t1) and (x2, t2). From this, the conditional probability44

density can be formally defined as a path integral45

W (x, t|x0) = N(t)


exp([−S[x(t)]/4λ]) D[x(t)], (5)46

in which D[x(t)] means a path differential and N(t) is a normalization factor. According to Feynman and Hibbs [1], ifQ247

L(ẋ(t), x(t)) is Gaussian, which means a function up to second degree in its variables, then the sum over the paths can48

1 Here the Lagrangian function has a different definition from that of classical dynamics.



Download	English	Version:

https://daneshyari.com/en/article/7380283

Download	Persian	Version:

https://daneshyari.com/article/7380283

Daneshyari.com

https://daneshyari.com/en/article/7380283
https://daneshyari.com/article/7380283
https://daneshyari.com/

