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h i g h l i g h t s

• We investigate high frequency financial time series in micro scale.
• We introduce a method for the investigation of micro patterns.
• Detection of dynamics and comparing degree of complexity of financial time series.
• HFT in recent years affect the micro patterns which may be seen in financial time series.
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a b s t r a c t

Permutation approach is suggested as amethod to investigate financial time series inmicro
scales. The method is used to see how high frequency trading in recent years has affected
the micro patterns which may be seen in financial time series. Tick to tick exchange rates
are considered as examples. It is seen that variety of patterns evolve through time; and
that the scale over which the target markets have no dominant patterns, have decreased
steadily over time with the emergence of higher frequency trading.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the middle of sixties, the algorithmic complexity theory was independently developed by Kolmogorov [1] and
Chaitin [2]. To parameterize complexity in deterministic or random dynamical systems, the most important quantity which
may be used is entropy. There are different ways to count the diversity of any pattern generated by a data source: Shannon
entropy, metric entropy, topological entropy, etc. After the seminal works of Shannon [3], in 1949 the word entropy came to
the fore in the new context of information theory, coding theory, and cryptography. Recently the concept of entropy is also
used in econophysics (see Refs. [4,5] and references therein) and sociodynamics [6]. The concept of entropy has been evolved
along different ways: Renyi entropy [7], topological entropy [8], Tsallis entropy [9], directional entropy [10], permutation
entropy [11], epsilon–tau entropy [12], etc. Permutation entropywas introduced by Bandt, Keller, and Pompe in Refs. [13,14].
Entropies are basic observables for dynamical systems. In Ref. [14] a piecewise monotonemap f from an interval I into itself
is defined, and it is shown that for piecewise monotone interval maps the Kolmogorov–Sinai entropy can be obtained from
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Fig. 1. Permutations Πi, i = 1, 2, . . . , 6, for n = 3.

order statistics of the values in a generic orbit. It has been shown that it is possible to use the permutation entropy to detect
dynamical changes in a complex time series [15].

Recently, permutation entropy has been used to study dynamical changes of EEG data [16]; and based on permutation
entropy, mutual information of two oscillators has been calculated [17].

In this article variety of micro patterns in financial time series have been studied. Variety of patterns in financial time
series is an important measure. In a completely random series all different patterns may occur with equal weight. If some
patterns in a time series aremuch less than the others, the time series contains dominant patterns. These dominant patterns
represent some characteristics of the system, which needs to be revealed. This information also could be used for prediction
of future changes, which for financial time series represent inefficiency in the target market. There are several definition
for the efficient market hypothesis (EMH) [18–20]. According to the EMH hypothesis, asset prices move as random walks
over time, and technical analysis should provide no useful information to predict future changes [21]. This means that asset
prices in an efficientmarket fluctuate randomly in response to the unanticipated component of news [22]. Some people take
EMH as a core assumption in finance theory [23]. But many physicists consider it only an approximation [24]. According to
EMH, in an efficient market variety of patterns for increments of the price in different scales should be at maximum level.

It is now known thatmostmarkets behave efficiently inmacro scale, and there are no dominate patterns in their financial
time series. But it seems that the investigation of micro patterns, and searching for dominant patterns by participants in
markets, in recent years, have faded those patterns. Permutation entropy is taken as a criteria for measuring the variety
of micro patterns which may be seen in financial time series. Tick to tick exchange rate time series are considered as an
example.

2. Definition

Consider a set of n distinct real numbers, {a1, a2, . . . , an}. One may define a map from these numbers to the set
{1, 2, . . . , n} in such a way that the ordering of the second set is the same as the first one. The range of this map will be n!
permutations. The permutation corresponding to {a1, a2, . . . , an} is called the pattern, and is denoted byΠ . See Fig. 1, for the
case n = 3. Consider a time series {xi}i=1,...,N . By awindow of length n, wemean any subsequence of the form {am, am+1, . . . ,
am+n}. There are N − n+ 1 windows of length n, to each of them there corresponds a pattern Π . If Πi is a given pattern, we
define

pi :=
Ni

N − n + 1
, (1)

where Ni is the number of n consecutive numbers with pattern Πi. For large N, pi tends to the probability of occurring the
pattern Πi. Permutation entropy of order n of a time series, {xk}Nk=1, is defined as (see e.g. Ref. [13])

Hn := −

n!
i=1

pi log pi. (2)

It can be shown that 0 ≤ Hn ≤ log n! [25]. Upper bound occurs when all pi’s have the same value, i.e. when the time series
is a completely random series; and the lower bound occurs when only one of pi’s is nonzero, which happens when the time
series is a decreasing or increasing sequence.

In some cases a linear function Hn = k(n − 1) + C is a good approximation. This means that for these time series, in the
view of permutation entropy, there are just two degrees of freedom for the time series.1

1 Of course this is not a common case, for example, in a completely random time series Hn ∝ n ln n, for large n, which is not a linear function of n.
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