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h i g h l i g h t s

• We study epidemic-like failures in real telecommunication networks.
• We introduce a slight modification of the mean-field equations not applied before.
• We have improved theoretical predictions with respect to stochastic simulations.
• The new epidemic threshold can be generalized to other networks and similar models.
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a b s t r a c t

We study epidemic-like failures in telecommunication networks. A mean-field model
taking two levels of failure into account is introduced where infection, recovery and
transition rates are node/link specific. Regarding the short-term epidemic outbreak, an
epidemic threshold is stated in terms of the basic reproduction number computed as the
largest eigenvalue of a weighted adjacency matrix of the network. As to the long-term
endemic situation, we have proved the existence and uniqueness of a steady state. We
check the accuracy of themodel bymeans ofMonte Carlo simulations. To improve the level
of accuracy, we propose a slight modification of the mean-field equations which changes
the way we compute the probability for a node of acquiring the infection from one of
its neighbors. As a consequence, correlations between probabilities of different states are
implicitly incorporated into themodel giving improved predictions and being very close to
simulation-based data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human history has been related to epidemics, many civilizations being ravaged by epidemic outbreaks such as the
Influenza pandemic in 1918, or the 2009 new flu strain H1N1 that hit the world leading to a pandemic with a large
amount of infections and panic. As a consequence, the analysis and the use of epidemic models have drawn the attention
of many researchers of different fields. Realistic epidemic models take some spatial heterogeneity into account that can be
incorporated through the network of contacts for instance [1–3]. Although epidemic models were originally developed
targeting biological populations/networks [4], nowadays they are widely used in other contexts such us the spread of
rumors/opinions on social networks, and the spread of digital viruses on communication infrastructures.
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In our high-tech society, people have becomemore andmore dependent on communication networks, either for business
or leisure purposes. Moreover, this dependency is expected to grow considering the myriad of new emerging technologies
and services such as smart-cities, cloud computing, e-health, the internet of things, and MANETs (Mobile ad hoc network).
Telecommunication infrastructures are subjected to all kind of challenges and do fail rather often: accidental cuts, hardware
malfunctioning, power outages, or even sabotage.

We study epidemic failure scenarios in telecommunication networks where a significant portion of the network fails
concurrently [5,6]. We focus on node propagation of failures and we consider two levels: partial failure when the node
(network device) can be repaired, and complete failure when the node has to be replaced by a new one. The failures referred
to in our work can happen either due to software or hardware reasons. Major current literature of network reliability is
mainly based on hardware failures. In these cases, network reliability/availability could be analyzed according to the MTTR
(Mean Time to Repair) and the MTBF (Mean Time Between Failure) values, which are provided by major network device
vendors. A good example of this analysis is reported in Ref. [7]. The authors of Ref. [8] assume that the recovery rates of
the epidemic model can be defined from the MTTR values of the network. However, the reliability of the network devices
under software-based failures is a new field of study due to the evolution of telecommunication networks towards fully
software-based networked systems; the so-called Software-Defined Networking paradigm. In the case of software-based
failures, it is not trivial to compute traditional reliability measures such as MTTR, since such failures depend on several
software engineering aspects.

We address the problem through a network-based epidemic model, of mean-field type [9], for the probabilities of
each disease state (susceptible/infected/disabled) in each node of the network. Schematically, the model is represented
as S � I → D→ S. The adjacency matrix of the network plays a central role in the analysis [10].

In themodel, we assume that properties depending on the state of two nodes can be decomposed in products depending
on the state of each individual node. Depending on the context, the latter is called lack of dynamical correlations or
spatial independence assumption [3]. This limitation can cause a low level of accuracy (see tables and diagrams in the
forthcoming sections) depending on the specific structure of the network. However, dynamic correlations can be implicitly
incorporated into the model providing highly accurate results in comparison with stochastic simulations. Therefore, we
propose a straightforward improvement of the mean-field equations.

The paper is organized as follows. Section 2 introduces the model as a Markov chain in continuous time where
infection/recovery/transition rates are node/link specific. In Section 3 the typical epidemic threshold (global stability or
instability of the disease-free equilibrium) is stated in terms of the basic reproduction number R0 (the largest eigenvalue of
aweighted adjacencymatrix). Useful lower and upper bounds for R0 are provided. Section 4 is devoted to prove the existence
and uniqueness of the endemic steady-state and its numerical computation. Section 5 is devoted to the implementation of
Monte Carlo simulations of the model on different real and synthetic networks in order to check the accuracy of the model.
Finally, in Section 6 we introduce a heuristic (slight) modification of the infection term which improves the accuracy of the
predictions and we end up with the conclusions in Section 7.

2. The model

Let us consider failure propagation scenarios in telecommunication networks, where nodes are network devices (e.g.,
routers) and links represent their physical interconnection (e.g., optical fibers), and where the exchange of information
is carried out by connections. In this context, we assume that the node failure process operates at two levels. The first
level occurs when the node failure can be repaired (i.e., the node continues to operate while being faulty and, because
the connections passing through such node are preserved, the failure can propagate) and the second level involves the
node needing to be replaced (i.e., the connections are dropped). As a consequence, we are considering a node failure that
can propagate in two directions: horizontally from node to node and vertically within each node (from partial to complete
failure) [5,11,12,6]. We refer to the nodes with the first level failure as infected/infectious nodes and those with the second
level failure as disabled nodes. It should be noted that disabled nodes have the role of temporal barriers for the spread of
multiple failures. Finally, we refer to the nodes working fine as susceptible nodes as it is usual in epidemic models. In Fig. 1
is shown a schematic representation of the S � I → D→ S model whose states characterize the different failure situations
that each node can experience.

The model is described as a Markov chain in continuous time. The state variables denoted here as pi(t) and qi(t), i =
1, . . . ,N , are the probabilities that node i of the network is infected or disabled at time t respectively. Accordingly, the
probability that node i is susceptible at time t is given by 1 − pi(t) − qi(t). The dynamic process is given by the following
non-linear system of ordinary differential equationsp′i(t) = (1− pi(t)− qi(t))


j∼i

βij pj(t)− (δi + τi) pi(t)

q′i(t) = τi pi(t)− γi qi(t) i = 1, . . . ,N,

(1)

where βij is the infection transmission rate from node j to node i, δi and γi are the recovery rates of node i from the state
of infected and disabled respectively, and τiis the transition rate of node i from the state of infected to disabled. The pass
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