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• A generative model that captures the essential dynamics of survival analysis.
• Solution of the mean-field equations for the model as a type of power-law.
• Validation of the model using two data sets from the survival analysis literature.
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a b s t r a c t

The recent interest in human dynamics has led researchers to investigate the stochastic
processes that explain human behaviour in different contexts. Here we propose a genera-
tivemodel to capture the essential dynamics of survival analysis, traditionally employed in
clinical trials and reliability analysis in engineering. In ourmodel, the only implicit assump-
tion made is that the longer an actor has been in the system, the more likely it is to have
failed. We derive a power-law distribution for the process and provide preliminary empir-
ical evidence for the validity of themodel from twowell-known survival analysis data sets.

© 2014 Published by Elsevier B.V.

Q2

1. Introduction 1

Recent interest in complex systems, such as social networks, the world-wide-web, email networks and mobile phone 2

networks [1], has led researchers to investigate the processes that may explain the dynamics of human behaviour within 3

these networks. For example, Barabási [2] suggested that the bursty nature of human behaviour, for example when mea- 4

suring the inter-event response time of email communication, is a result of a decision-based queuing process. In particular, 5

humans tend to prioritise actions, for example when deciding which email to respond to, and therefore a priority queue 6

model was proposed in Ref. [2], leading to a heavy-tailed power-law distribution of inter-event times. 7

The tail of a power-law distribution decays polynomially in contrast to the exponential decay characteristic of the Gaus- 8

sian distribution, which is why it is also referred to as a heavy-tailed distribution. A power-law distribution takes the general 9

form 10

g(i) =
C
iρ

, 11

representing the proportion of observations having the value i, where C and ρ are positive constants; we call ρ the exponent 12

of the distribution [3]. 13

Survival analysis [4] provides statistical methods to estimate the time until an event will occur, known as the survival 14

time. Typically, an event in a survival model is referred to as a failure, as it often has negative connotations, such as death or 15
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the contraction of a disease, although it could also be positive, such as the time to return towork or to recover from a disease.1

In the context of email communication mentioned above, an event might be a reply to an email. Traditional applications of2

survival analysis are in clinical trials [5], and reliability engineering [6], the analogue of survival analysis for mechanical3

systems. However, one can envisage that survival analysis would find application in newer human dynamics scenarios in4

complex systems, such as those arising in social and communication networks [2,7,8].5

Of particular interest to us has been the formulation of a generative model in the form of a stochastic process by which a6

complex system evolves and gives rise to a power law or other distribution [9–11]. This type of research builds on the early7

work of Simon [12], and the more recent work of Barabási’s group [13] and other researchers [14]. In the context of human8

dynamics, the priority queuemodel [2] mentioned above is a generative model characterised by a heavy-tailed distribution.9

In the bigger picture, one can view the goal of such research as being similar to that of social mechanisms [15], which looks10

into the processes, or mechanisms, that can explain observed social phenomena. Using an example given in Ref. [16], the11

growth in the sales of a book can be explained by the well-known logistic growth model [17].12

The motivation of this paper is in the formulation of a simple generative model that will capture the essential dynamics13

of survival analysis applications. For this purpose, we make use of an urn-based stochastic model, where the actors are14

called balls, and a ball being present in urni, the ith urn, indicates that the actor represented by the ball has so far survived15

for i time steps. An actor could, for example, be a subject in a clinical trial or an email that has not yet been replied to.16

As a simplification, we assume that time is discrete and that, at any given time, one ball may join the system with a fixed17

probability. As a result, at any given time, say t , we may have at most one ball in urni, for all i ≤ t . Alternatively, with a fixed18

probability, an existing ball in the system may be chosen uniformly at random and discarded. We note that at any time t ,19

if i < j, the probability that urni is empty is less than the probability that urnj is empty, as a ball in urnj could have been20

discarded at any of the previous j time steps, whereas a ball in urni could have only been discarded at any of the previous i21

time steps, and a ball to be discarded is chosen uniformly.22

This mechanism can be contrasted with the preferential attachment rule in evolving networks [13] (also known as the23

‘‘rich get richer’’ phenomenon [1]), where the probability of adding a new link to a node (or actor) is proportional to the24

number of existing links that the node already has. In our case, actors are chosen uniformly rather than preferentially;25

however, the model keeps a record of the time for which an actor has survived so for.26

Our main result is to derive a power-law distribution for the probability that, after t steps of the stochastic process27

outlined above, there is a surviving ball in urni, where i ≤ t . Thus, in our model, the survivor function [4], which gives the28

probability that a patient (in our model a ball) survives for more than a given time, can be approximated by a power-law29

distribution. It is interesting to observe that the resulting distribution has two parameters, i and t , as in Ref. [11], whereas30

most previously studied generative stochastic models [13,3], including those in our previous work [9,10], result in steady31

state distributions that are asymptotic in t to a distribution with a single parameter i. As a proof of concept, we demonstrate32

the validity of our model by analysing two well-known data sets from the survival analysis literature [4].33

The rest of the paper is organised as follows. In Section 2, we present our stochastic urn-based model that provides us34

with a mechanism to model the essential dynamics of survival models, and we derive the resulting power-law distribution.35

In Section 3, we apply our generative model to twowell-known data sets from survival analysis, and finally, in Section 4, we36

give our concluding remarks.37

2. An evolutionary urn transfer model38

In this section we formalise our stochastic urn model for modelling the dynamic aspects of a time-varying system and39

present an approximate solution to the mean field equations describing the model.40

We assume a countable number of urns, urn1, urn2, . . . . Initially all the urns are empty except urn1, which has one ball41

in it. Let Fi(t) be 1 or 0, respectively, according to whether or not there is a ball in urni at time t of the stochastic process.42

Initially we set F1(1) = 1, and for all other urns Fi(1) = 0. The age of a ball in urni is defined to be i. Then, at time t + 1 of43

the stochastic process, where t ≥ 1, one of two things may occur:44

(i) with probability p, where 0 < p < 1, a new ball is put into urn1 (i.e. its initial age is 1), or45

(ii) with probability q(1 − p), where 0 < q < 1, an urn is selected, with urni being selected with probability proportional46

to Fi(t), i.e. one of the non-empty urns is selected uniformly at random, and the ball in the selected urn is discarded.47

Next, the age of all balls remaining in the system, apart from a new ball that may have just been put into urn1 during this48

time step, is incremented by 1, i.e. any ball in urni is moved to urni+1 for each i.49

We observe that, in this model, Fi(t) is equal to either 1 or 0, since at most one new ball is generated at time t and the age50

of all other balls increases by one at time t . Moreover, it can be seen that, at any given time t > 1, the probability of there51

being a ball in urn1 is p.52

We constrain the system so that on average more balls are added to the system than are discarded, i.e.53

p > q(1 − p),54

otherwise the system would almost surely degenerate into a state of emptiness, i.e. having no balls in the system. This55

constraint is an instance of the gambler’s ruin problem [18], from which it follows that the probability that the urn transfer56

process will not terminate with all the urns being empty is strictly positive [9].57
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