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h i g h l i g h t s

• Opinion can be controlled by committed nodes which are immune to influence.
• We introduce conditions under which the opinion dynamics is controllable.
• Opinion fluctuation is determined by the smallest negative eigenvalue.
• Driver node with high K-shell can guide the network to the final position smoothly.
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a b s t r a c t

This paper presents a framework to analyze the controllability of opinion dynamics in social
networks using DeGroot model (DeGroot, 1974). We show how the opinion, or attitude
about some commonquestions of interest in a population can be controlled by a committed
nodewho consistently proselytizes the opposing opinion and is immune to influence. Some
criteria are established to guarantee that opinion dynamics of networks can be perfectly or
partially controlled.We also find that the opinion fluctuation is determined by the smallest
negative eigenvalue of an influence matrix.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction 1

Human behavior is profoundly affected by the influenceability of individuals and the social network that links them 2

together. We base our study on an important model of influence network largely due to DeGroot [1]. In this model, the 3

social structure of a society is described by a weighted and directed network. Each node in the network takes an initial 4

position (between −1 and +1) about a common question of interest. At each date, nodes communicate with other nodes 5

and update their positions because of influences from neighbors. The updating process is simple: a node’s new position is 6

the weighted average of his or her neighbors’ positions from the previous period. Over time, positions may converge to a 7

consensus, provided that some conditions are satisfied. 8

Intuitively, one can influence a set of nodes to guide the network’s behavior towards a desired state. Let an outside 9

controller be a node that can continuously influence its neighbors through the updating process, but never changes its own 10

position. Suppose the initial position of the outside controller be+1 andwewish to bring the network to a final state, where 11

all the other nodes’ positions are +1 or positive. If all nodes in the network have the same final position with the outside 12

controller, we say that the network is perfectly controllable. If all nodes’ final positions are positive, then the network is 13
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partially controllable. We also call those nodes as driver nodes if they are directly influenced by the outside controller. We1

are particularly interested in identifying the minimum number of driver nodes, whose control is sufficient to control the2

network’s opinion dynamics.3

There is a large theoretical literature on social convergence and learning [2–6]. In contrast to the learning models,4

convergence and consensus in our work are analyzed to find ways that guide the network’s behavior towards a desired5

state. The works of Refs. [7–9] are closer to the spirit of our work, but their models, questions, and basic structures are quite6

different from ours. Liu et al. [7] investigated the network controllability based on control and graph theories, whereas7

Wang et al. [8] adopted a pinning control strategy to drive a network from any initial state to a desired synchronous8

state. Kitsak et al. [9] addressed the issue of the identification of influential spreaders in networks. They found that the9

most efficient spreaders are those located within the core of the network. The spreading process models they apply are10

the susceptible–infectious–recovered (SIR) and susceptible–infectious–susceptible (SIS), which are always used to describe11

disease spreading as well as information and rumor spreading in social networks.12

There is literature in physics and computer science on the DeGroot model and variations on it [10]. However, the focus13

has generally been on consensus [11,12] rather than on controllability. DeMarzo et al. examined a variation on the DeGroot14

model [13] where it allows updating to vary over time, so that an agent might place more or less weight on his or her15

own position over time. Another model [14] allows a node to only pay attention to other nodes whose positions are not16

far from his or her own. Thus, the model has a sort of distrust for information that is too different from his or her own.17

This is also closely related to the model [15] where at each time two agents are randomly matched and updating their18

positions only if the positions are close enough to each other. Yildiz et al. [16] investigated a model of discrete (binary)19

opinion dynamics based on a voter model. In this model, each individual holds one or two opinions. At each date, some20

randomly chosen individuals observe one of his or her neighbors and adopt the opinion. Authors characterized the effect21

of network structure and the opinion of stubborn agents on the long-run distribution of opinions. Another literature also22

discussed opinion dynamics that by applying linear exogenous control over DeGroot update cycles of beliefs, the agents can23

be persuaded to shift their beliefs in desired ways [17].24

Indeed, although there is a large literature on social convergence and learning, there has been hardly anywork on how to25

control the dynamics of continuous opinions under the DeGroot model. We address this by: (i) introducing the conditions26

under which the opinion dynamics of a social network is controllable; (ii) proposing general methods to control the opinion27

dynamics in social networks. We also examine what determines the fluctuation of opinions when the network reaches a28

consensus.29

2. The DeGroot model30

In the DeGroot model, a finite set V = {1, 2, . . . , n} of nodes interact according to an influence network. The interaction31

patterns are represented by a n-by-n nonegative influence matrix T = {Tij}ni,j=1, where Tij > 0 defines the degree of influence32

that node j has on the position of node i. Nodes update positions by repeatedly taking weighted averages of their neighbors’33

positions with Tij being the weight that node i places on the current position of agent j in forming his or her position for the34

next period. Each node, say i, has a position p(t)
i ∈ [−1, +1] at time t . The updating rule is35

p(t)
= Tp(t−1),36

and so37

p(t)
= Ttp(0).38

The matrix T represents the social network of interactions, i.e., Tij = 0 implies that node i does not get direct information39

from node j regarding his position, or equivalently, there is no directed link from node i to j in the underlying social network.40

The weight matrix T is a (row) stochastic matrix, i.e., the sum of entries across each row is equal to one. At each time instance41

nodes update their positions to a convex combination of their current positions and the positions of their neighbors. This42

process is reasonable and has many nice properties despite its simplicity [11,12].43

For an influence network, its influence matrix T is convergent if limt→∞ Ttp(0) exists for all initial vectors p(0)
∈44

[−1, +1]n. Since the matrix T is an n-by-n row stochastic matrix, it can be regarded as the one-step transition probability45

matrix of a Markov chain with n states and stationary transition probabilities, and the standard limit theorem of Markov46

chain can be applied [1]. It can be shown that if the matrix T is such that the Markov chain with transition matrix T is47

irreducible and aperiodic, thennodes’ positions reach a consensus in the limit. In particular, a stochasticmatrixT is convergent48

if and only if every set of nodes that is strongly connected and closed is aperiodic [10]. If there is more than one strongly49

connected closed set, the influence network will not always reach a consensus.50

3. Influence controllability51

We consider a society envisaged as an influence network G(V, E) of n interacting nodes, communicating and exchanging52

information. At time t = 0, each node v ∈ V starts with an initial position p(0)
v ∈ [−1, +1]. An outside controller never53

changes his position: he might correspond to an opinion leader or a political party wishing to influence the rest of the54
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