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h i g h l i g h t s

• Two stochastic models are built to generate two different interdependent networks.
• The effects of dependence relation and strength are considered.
• The robustness of two interdependent networks are compared.
• Another network elimination mechanism is proposed and different results are given.
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a b s t r a c t

Two stochasticmodels are proposed to generate a system composed of two interdependent
scale-free (SF) or Erdős–Rényi (ER) networks where interdependent nodes are connected
with an exponential or power-law relation, as well as different dependence strength,
respectively. Each subnetwork grows through the addition of new nodes with constant
accelerating random attachment in the first model but with preferential attachment in
the second model. The two subnetworks interact with multi-support and undirectional
dependence links. The effects of dependence relations and strength between subnetworks
are analyzed in the percolation behavior of fully interdependent networks against
random failure, both theoretically and numerically, and as a result, for both relations:
interdependent SF networks show a second-order percolation phase transition and
the increased dependence strength decreases the robustness of the system, whereas,
interdependent ER networks show the opposite results. In addition, the power-law relation
between networks yields greater robustness than the exponential one at the given
dependence strength.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction 1

Nowadays, with the enhanced development of modern technology, the interaction between networks becomes 2

increasingly intensive and complicated [1–3]. Examples of interdependent networks are ubiquitous and include the subway 3

network and the airport network in the transportation system, the bank network and the company network in the economy 4

system, the communication network and the power grid network in the infrastructure system, and so forth. In these 5
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interdependent networks, the failures of nodes in one subnetwork generally will lead to the failure of dependent nodes1

in the other subnetworks [4–9]. This may happen recursively and might lead to a cascade of failures. Understanding how2

robustness is affected by the interdependence between subnetworks becomes one challenge when designing resilient3

systems. Very recently, several studies presented a theoretical framework for studying the process of cascading failures in4

interdependent networks and showed that interdependencies significantly increase the vulnerability of the entire networks5

to random attack [10–13]. In addition, the first-order phase transition presented in interdependent networks is totally6

different from the second-order phase transition which occurred in an isolated network.Q27

Most existing studies have focused almost exclusively on random interdependent networks inwhich the interdependent8

nodes are randomly connected, which is at odds with real complex systems. Taking the Italian power grid and9

communication networks as an example [4,10,14], it is very common that a central communication station depends on10

a central power station and vice versa. Similarly, well-connected seaports are found more likely to depend on well-11

connected airports in Ref. [15] where positive correlation exists between the interaction of subnetworks. Based on this12

feature, interdependence with correlation, not random, has attracted much attention to the robustness of interdependent13

networks currently. Parshani [15] and Cho [16] have shown a similar result that the positively correlated interdependence14

enhances the robustness of networks, respectively. Buldyrev et al. [17] have analytically investigated the situation with one15

simple correlation that all pairs of interdependent nodes have the same degree. In addition, Refs. [6,18] have discussed16

the interdependence relation represented by the Poisson distribution and power-law distribution in stochastic models,17

respectively. Furthermore, the effect of the dependence strength between subnetworks also plays the key role in the18

percolation of interdependent networks. Ref. [10] has found that when the dependence strength is reduced, the percolation19

transition becomes second-order transition at a critical coupling strength, which enhances the robustness of the system.20

Howand towhat extent the relation of interdependence between subnetworksmight influence the entire system’s structure21

and function are still not well known.22

In the present work, discussing the effect of different dependence relations and dependence strength on the robustness23

of the interacting system under random attack is our focus and motivation. Two types of relations are generated by two24

stochastic growing networkmodelswhereby the origin of relations is explained. One is that interdependent nodes randomly25

depend on each other with an exponential degree distribution; the other is that they preferentially depend on each other26

with a power-law degree distribution. In addition, two interdependent scale-free (SF) and Erdős–Rényi (ER) networks are27

also created in these two models, respectively. The influences of dependence relations and coupling strength of multi-28

support, undirectional dependence links on the robustness of networks are theoretically analyzed and simulated. As a29

result, it is found that, (1) two different interdependence links could be generated by the addition of dependence links;30

(2) for interdependent SF networks and ER networks, different types of phase transition and opposite effects of dependence31

strength are presented; (3) for the effect of interdependence, the power-law distribution of dependence degree yields32

higher robustness than the exponential onewith given dependence strength. Furthermore,we consider another dependency33

mechanism in models that several giant components, not only one giant component, could exist after the cascading failure,34

which results in unexpected findings and is helpful in designing robust interdependent networks with more realistic35

consideration.36

2. The first model37

In both the twomodels, there are two types of links among the nodes: connectivity links (intra-links in each subnetwork)38

that enable the nodes to function cooperatively as a network, and dependence links (cross-links between subnetworks) that39

bind the failure of one subnetwork node to the failure of other subnetwork nodes. These two kinds of links correspond to40

two kinds of degree of each node in networks, connectivity degree (kcon) and dependence degree (kdep), respectively. The41

first model of two interdependent scale free (SF) networks is built by the following considerations.42

Initially, both subnetworks A and B contain m0 nodes and n0 connectivity links, without dependence links between43

subnetworks. At each time step t , two new nodes are introduced simultaneously, one belonging to subnetwork A and the44

other belonging to subnetwork B. The new node joining to subnetwork AwithmA links added, preferentially attaches 1−qA45

fraction of its links as connectivity links to pre-existing nodes in subnetwork A. The rate of acquiring a link replies on the46

degrees of pre-existing nodes in subnetwork A. And then this new node randomly or preferentially attaches qA fraction of47

links as dependence links to pre-existing nodes in subnetwork B. In otherwords, the connectivity degree and the dependence48

degree of the new node joining to subnetwork A are equal tomA(1− qA) andmAqA at time step t through different addition49

methods, respectively. The similar process is executed when a new node joins to subnetwork B, where the new node50

has mB links added from which 1 − qB fraction of them randomly connect to pre-existing nodes in subnetwork B and qB51

fraction of them randomly or preferentially connect to pre-existing nodes in subnetwork A, and its connectivity degree52

and dependence degree are equal to mB(1 − qB),mBqB, respectively. qA and qB are defined as the strength of dependence53

between two subnetworks. Larger qA(qB)means more dependence links between subnetworks or the more intensively two54

subnetworks depend on each other. The process ends when the size of both subnetworks increases up to N . In fact, through55

this model, the subnetworks A and B generated are equivalent to the classical random graph studied by Barabási–Albert56

with a power-law degree distribution (p(kcon)), and thereby named two interdependent SF networks. Two dependence57

relations between interdependent nodes are represented by the degree distribution of dependence links p(kdep). One is the58
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