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h i g h l i g h t s

• We propose a model of multiscale time series based on stable distributions.
• We analyze the series with multifractal diffusion entropy.
• We demonstrate the need for optimal bin-width in associated empirical histograms.
• We propose a method for optimal bin-width in general multifractal time series.
• Our proposal is illustrated with financial time series of S&P500 index.
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a b s t r a c t

In the framework of Multifractal Diffusion Entropy Analysis we propose a method for
choosing an optimal bin-width in histograms generated fromunderlying probability distri-
butions of interest. Themethod presented uses techniques of Rényi’s entropy and themean
squared error analysis to discuss the conditions under which the error in the multifractal
spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a
scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as
sampled at a daily rate in the time period 1950–2013. In order to demonstrate a strength of
the method proposed we compare the multifractal δ-spectrum for various bin-widths and
show the robustness of the method, especially for large values of q. For such values, other
methods in use, e.g., those based onmoment estimation, tend to fail for heavy-tailed data or
data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter
is also discussed and elucidated on a simple example of multiscale time series.

© 2014 Published by Elsevier B.V.
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1. Introduction 1

The evolution of many complex systems in natural, economical, medical and biological sciences is usually presented 2

in the form of time data-sequences. A global massification of computers together with their improved ability to collect 3

and process large data-sets has brought about the need for novel analyzing methods. A considerable amount of literature 4

has been recently devoted to developing and using new data-analyzing paradigms. These studies include such concepts as 5

fractals and multifractals [1], fractional dynamics [2,3], complexity [4,5], entropy densities [5] or transfer entropies [6–8]. 6
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Particularly in the connection with financial time series there has been rapid development of techniques for measuring and1

managing the fractal and multifractal scaling behavior from empirical high-frequency data sequences. A non-trivial scal-2

ing behavior in a time data-set represents a typical signature of a multi-time scale cooperative behavior in much the same3

way as a non-trivial scaling behavior in second-order phase transitions reflects the underlying long-range (or multi-scale)4

cooperative interactions. The usefulness of the scaling approach is manifested, for instance, in quantifying critical or close-5

to-critical scaling which typically signalizes the onset of financial crises, including stock market crashes, currency crises or6

sovereign defaults [9]. Amultifractal scaling, in particular, is instrumental in identifying the relevant scales that are involved7

in both temporal and inter-asset correlations [8]. In passing, one can mention that aside from financial data sequences, sim-8

ilar (multi)fractal scaling patterns are also observed (and analyzed) in time data-sets of heart rate dynamics [10,11], DNA9

sequences [12,13], long-time weather records [14] or in electrical power loads [15].10

In order to identify fractal and multifractal scaling in time series generated by a complex system (of both deterministic11

and stochastic nature), several tools have been developed over the course of time. To the most popular ones belong the12

Detrended Fluctuation Analysis [12,16], Wavelets [17], or Generalized Hurst Exponents [18]. The purpose of the present13

paper is to discuss and advance yet another pertinent method, namely the Multifractal Diffusion Entropy Analysis (MF-14

DEA). In doing so we will stress the key rôle that Rényi’s entropy (RE) plays in this context. To this end, we will employ two15

approaches for the estimation of the scaling exponents that can be directly phrased in terms of RE, namely, the monofractal16

approach of Scafetta et al. [19] and themultifractal approach ofHuang et al. [20],with further comments ofMorozov [21]. The17

most important upshot that will emerge from this study is the proposal for the optimal bin-width in empirical histograms.18

The latter ensures that the error in the RE (and hence also scaling exponents) evaluation, when the underlying probability19

density function (PDF) is replaced by its empirical histograms, is minimal in the sense of Rényi’s information divergence20

and the associated L2-distance. We further show that the ensuing optimal bin-width permits the characterization of the21

hierarchy of multifractal scaling exponents δ(q) and D(q) in a fully quantitative fashion.22

This paper is structured as follows: In Section 2 we briefly review foundations of the multifractal analysis that will be23

needed in following sections. In particular, we introduce such concepts as Lipschitz–Hölder’s singularity exponent, multi-24

fractal spectral function and their Legendre conjugates. In Section 3we state some fundamentals of the fluctuation collection25

algorithm and propose a simple instructive example of a heterogeneous multiscale time series. Within this framework we26

discuss the MF-DEA and highlight the rôle of Rényi’s entropy as a multiscale quantifier. After this preparatory material we27

turn in Section 4 to the question of the optimal bin-width choice that should be employed in empirical histograms. In par-28

ticular, we analyze the bin-width that is needed to minimize error in the multifractal spectrum evaluation. In Section 5, we29

demonstrate the usefulness and formal consistency of the proposed error estimate by analyzing time series from S&P50030

market index sampled at a daily (end of trading day) rate basis in the period from January 1950 to March 2013 (roughly31

16000 data points). We apply the symbolic computations with the open source software R to illustrate the strength of32

the proposed optimal bin-width choice. In particular, we graphically compare the multifractal δ-spectrum for various bin-33

widths. Our numerical results imply that the proposed bin-widths are indeed optimal in comparisonwith other alternatives34

used. Implications for the δ(q)-spectrum as a function of Rényi’s q parameter are also discussed and graphically represented.35

Conclusions and further discussions are relegated to the concluding section. For the reader’s convenience, we present in36

the Appendix the source code in the language R that can be directly employed for efficient estimation of the δ(q)-spectrum37

(and ensuing generalized dimension D(q)) of long-term data sequences.38

2. Multifractal analysis39

Let us have a discrete time series {xj}Nj=1 ⊂ RD, where xj are obtained frommeasurements at times tj with an equidistant40

time lag s. We divide the whole domain of the definition of xj’s into distinct regions Ki and define the probability of each41

region as42

pi ≡ lim
N→∞

Ni

N
= lim

N→∞

card{j ∈ {1, . . . ,N} | xj ∈ Ki}

N
, (1)43

where ‘‘card’’ denotes the cardinality, i.e., the number of elements contained in a set. For every region, we consider that44

the probability scales as pi(s) ∝ sαi , where αi are scaling exponents also known as the Lipschitz–Hölder (or singularity)45

exponents. The key assumption in the multifractal analysis is that in the small-s limit we can assume that the probability46

distribution depends smoothly on α and thus the probability that some arbitrary region has the scaling exponent in the47

interval (α, α + dα) can be considered in the form48

dρ(s, α) = lim
N→∞

card{pi ∝ sα′

| α′
∈ (α, α + dα)}

N
= c(α)s−f (α)dα. (2)49

The corresponding scaling exponent f (α) is known as the multifractal spectrum and by its very definition it represents the50

(box-counting) fractal dimension of the subset that carries PDF’s with the scaling exponent α.51

A convenient way how to keep track with various pi’s is to examine the scaling of the correspondent moments. To this52

end one can define a ‘‘partition function’’53

Z(q, s) =


i

pqi ∝ sτ(q). (3)54
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