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a b s t r a c t

This study comprehensively quantifies the effects of regularity on the geometrical
properties of a random three-dimensional Voronoi tessellation (VT), where regularity was
defined as the ratio of the minimum seed distance to the seed distance of the correlated
body-centred cubic lattice. A scheme to generate Voronoi tessellations with controlled
regularity is proposed, which was used to simulate 106 cells for a series of regularities.
The results were used to derive probability distributions for the properties of the
tessellation, including faces and edges per cell, vertex anddihedral cell angles, cell areas and
volumes, etc. An understanding of the relation between a simple, measurable parameter
characterizing the degree of regularity of a Voronoi tessellation and its geometrical
properties is essential in generating virtual microstructures that are statistically
representative of reality; the statistical results are also relevant to all other applications
involving randomVoronoi tessellations. Finally, an application is presented of the proposed
Voronoi tessellation generation scheme applied to micromechanical modelling of grain
structures with defined regularities for crystal plasticity finite element analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The three-dimensional (3D) Voronoi tessellation (VT) geometric model [1] partitions space into convex polygons, or
cells, which fill the available volume completely. The VT model and its variants have been applied in a wide range of
science and engineering subjects [2,3], including crystallography [4], materials science [5,6], biology [7], geography [8],
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astronomy [9], management [10] and control [11]. These models have been found extremely useful in micromechanical
modelling, e.g. in generating high fidelity virtual cellular structures for mechanics simulations [5,6], and grain structures for
large-scale realistic micro-forming analyses [12,13].

Some micromechanical applications require exact microstructure representation using reconstructions based on
e.g. Electron Backscatter Diffraction (EBSD) measurements [14]. The VT is employed where a statistically equivalent
representation of a real grain structure is sufficient, which obviates the need for laborious and expensive experimental
characterization; statistically equivalent representations also facilitate parametric studies to correlate features of the grain
morphology to the mechanical behaviour. Other methods for generating statistically equivalent virtual grain structures
exist, including the Monte Carlo (Potts) model [15], ellipsoid packing [16], cellular automata [17], phase field [18] and level
set [19]methods. In some instances, thesemethods are coupled to kinetics equations to describe an evolvingmicrostructure,
e.g. static recrystallization [20].

The VT model can be interpreted as the product of the isotropic growth process from a spatial distribution of static
seeds. The resulting structure is completely and unambiguously determined by the initial distribution of seeds. If seeds
are entirely randomly generated, the resulting structure is a Poisson Voronoi tessellation. An important adaptation of the
Voronoi tessellation is the ‘hard-sphere’ model, which introduces a minimum exclusion distance between adjacent seeds
upon which the tessellation is based. This type of ‘hard-sphere’ model, along with the limiting case of a Poisson Voronoi
tessellation for which the exclusion distance is zero, will be considered in this paper.

The geometric characteristics of three-dimensional Poisson Voronoi tessellations have been studied extensively.
Meijering [4] derived theoretical results for several properties including the mean numbers of faces and edges per cell
and the mean total surface area and edge length per cell, while Gilbert [21] enumerated the theoretical variances of the
cell volume. Mason et al. [22] derived local relations to evaluate the number of faces of a grain in individual grain clusters.
Meanwhile, Mahin et al. [23] and Andrade and Fortes [24] studied characteristics of such cells using computer simulation,
the former considering planar sections through the tessellation and the latter considering the cell volume; in each case the
simulations were based upon fewer than 10,000 cells. Using larger-scale simulations, Kumar et al. [25] simulated 358,000
Poisson Voronoi cells and examined the distributions of various properties including the numbers of faces and edges per
cell and both total surface area and the volume per cell. In a subsequent study, Kumar and Kurtz [26] simulated 377,000
cells and derived distributions of the dihedral and bond angles (the angles between adjacent faces and edges, respectively),
as well as the total edge length of a cell and of a cell face. Ferenc and Néda [27] studied the cell size distribution properties
for two- and three-dimensional Poisson Voronoi tessellations, and proposed a simpler general form of distribution function,
calibrated based on statistical results.

Naturally occurring Voronoi tessellations vary significantly in their ‘degree’ of regularity. The higher the minimum
exclusion distance for a given number of points in a region, the greater will be the regularity of the corresponding Voronoi
tessellation. Studies of Voronoi tessellations with non-zero exclusion distance, which may be regarded as packings of hard
spheres, include those by Hanson [28] who considered the cell volume distribution. In addition, for such tessellations based
upon sphere packing, Oger et al. [29] derived distributions for the number of faces per cell, the total surface area per cell and
the volume per cell, aswell as severalmetric properties for an f -faceted cell. Lucarini [30] examined the statistical properties
of random 3D tessellations, which were produced by perturbing cubic lattices with a specified Gaussian noise to individual
lattice points. The distribution features of the number of faces, the area and the volume have been reported for tessellations
obtained with different strengths of white noise. In Ref. [31], Kumar and Kumaran studied the cell volume distributions of
random Voronoi tessellations, and a parameter to evaluate a tessellation’s regularity was proposed based on the statistical
variation of the volume distribution. This was based on the fact that the more regular a tessellation is, the narrower its
volume distribution. The value can only be determined by a statistical evaluation, not by a geometrical measurement.

This paper will build upon previous works in two dimensions [32], and 3D Voronoi tessellations with different degrees of
regularity [5,6]. The main objective is an investigation of the relation between the topological and metric characteristics of
a Voronoi tessellation and its ‘degree of regularity’, defined here by a parameter a. Previous statistical studies were limited
to examinations of particular regularities; Kumar and Kurtz [26] and Oger et al. [29] focused mainly on Poisson (α = 0)
and delta (α ∼ 0.7) type Voronoi tessellations, respectively. This study also goes beyond previous studies by examining 106

cells. The statistical results can be of importance for every application involving random Voronoi tessellations. In order to
demonstrate the potential application, three dimensional crystal plasticity finite element (CPFE) models were built, where
virtual grain structures are generated with controlled regularities using the proposed scheme.

2. Method of analysis

2.1. The seeds

Firstly, N points are generated in a central cube that has a volume V0 and periodic boundary conditions. A Cartesian
coordinate system is chosen, and points are placed in the cube by deriving x, y and z coordinates independently frompseudo-
random numbers1 generated evenly between zero and one. Once the first point has been placed, subsequent points are

1 The ‘rand()’ library function on the Silicon Graphics IRIX6.5 platform is used here.
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