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a b s t r a c t

The main aim of this work is to enhance the conversion of mechanical energy into electrical energy by
using direct piezoelectric effect. Under the assumption of the Euler–Bernoulli Beam Theory, a piezo-
electric cantilever bending of 31-effect was developed. The equations of motion for the global system
were established by using Hamilton’s principle and solved by using the modal decomposition method. It
provided the transfer functions model between the inputs (force) and the outputs (voltage) allowing the
description of its dynamic behaviour for energy harvesting. The model was implemented by using Matlab
software and will be able to integrate with the circuit model of energy storage. The results obtained show
a good agreement with the experiments and other previous works. The model and the experiment indi-
cate that the second mode of resonant frequency provides the voltage and the bandwidth much larger
than the first mode. While the mass at the free end increases, the voltage obtained by the first mode
increases. In contrast, the voltage obtained by the second mode decreases.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The mechanical energy exists almost everywhere. The source
can be a movement of human body, a vibrating structure sur-
rounding a system or a wind and wave power. There are several
techniques to convert them into electrical energy such as piezoelec-
tric, electromagnetic and electrostatic transducer. The choice of the
techniques depends on the source and its application. According to
the literature, using direct piezoelectric effect is one of the favorite
ways which well adapts to the applications of micro power sup-
pliers. This energy conversion can replace the battery and be used
as a power supply for autonomous wireless sensors and wearable
electronics.

The aim of this paper is to convert efficiently the mechanical
vibrations into electrical energy by using direct piezoelectric effect.
Those mechanical vibrations of the environment usually occur with
various frequencies. The piezoelectric converter provides the max-
imum energy conversion while its natural frequency is close to the
frequency of mechanical source. For that reason, we proposed a
mathematical model which can predict the natural frequency of
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the piezoelectric cantilever bending sensor and can describe its
dynamic behaviour for a better energy conversion.

Many authors have investigated piezoelectric modeling with
an analytical solution or a finite element approach, but most of
them have intended to piezoelectric actuator/sensor modeling for
vibration control of active structures [1,2]. Over the past few years,
there has been an increasing attention on the use of autonomous
wireless sensors and wearable electronics. For that reason, the
authors have started to interest in experiments and modeling of
a piezoelectric converter for energy harvesting which is used as
autonomous microsystems suppliers. Poulin et al. [3] developed an
analytical model of long piezoelectric bar 33-effect based on New-
ton’s law. This model was presented under the form of the Mason’s
equivalent circuit and allowed to study the evolution of electrical
power versus frequency. Ferrari et al. [4] proposed an experiment
of a piezoelectric multifrequency energy converter made of three
piezoelectric bimorph cantilevers with the same dimensions and
different masses at the free end. As a consequence, each can-
tilever has different fundamental resonant frequencies which allow
widening the overall equivalent bandwidth of the converter array.
Under the assumption of the Kirchhoff plate theory, De Marqui
et al. [5] presented an electromechanical finite element plate model
which is based on the Hamilton’s principle to establish the equa-
tion of motion. Many authors developed the model of piezoelectric
converter, based on physical principles, in which the mechani-
cal behaviour is described as a single mass spring-damper system
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Fig. 1. Schematic view of piezoelectric cantilever.

[6–9]. However the single mass spring model allows describing the
dynamic behaviour for only the first mode of resonant frequency.
In case of the mechanical source happening at high frequency (vary
from 0.5 to 2 kHz), the second and the following modes can be
useful.

The main focus of this work is to model a piezoelectric can-
tilever bending of 31-effect for energy harvesting as shown in Fig. 1.
Under the assumption of the Euler–Bernoulli Beam Theory (EBT),
the equations of motion for the system were established basing on
Hamilton’s principle and solved by using the modal decomposition
method. This method is extended from the previous work of lon-
gitudinal vibrations modeling [10,11]. This model allows providing
the transfer functions between the inputs (for example, an external
force F(s)) and the outputs (for example, a transverse displacement
and a voltage V(s)) which can present the dynamic behaviour in dif-
ference kinds of the mode shapes by time and frequency response.
The model was implemented using Matlab software and will be
able to integrate with the circuit model of energy storage [12],
for instance, developed by Shen et al. [7] and Ajitsaria et al. [13].
The results obtained by analytical solution are compared with the
experimental ones.

2. Linear equations and variational formulation

The modeling and analysis of piezoelectric cantilever are made
under the assumption of Euler–Bernoulli. The displacements u, v
and w are denoted respectively along the coordinates x, y and z. Only
the displacements in the plan Oxz are considered, the transverse
displacements can be obtained:

v = 0, (3-1)

w = w(x, t) (3-2)

The axial displacement results from the rotation of the cross
section:

u = −z� = −z ∂w(x, t)
∂x

= −zw,x(x, t) (3-3)

where � is the slope. Throughout this paper, partial derivatives are
denoted as:

fi,j = ∂fi
∂xj
, fi,jj = ∂2fi

∂x2
j

, fi,jjj = ∂3fi
∂x3
j

and fi,jjjj = ∂4fi
∂x4
j

Under the assumptions of the linear strain-displacement, the
component axial S1 along Ox of strain tensor can be simplified [14]:

S1(x, z, t) = ∂u(x, z, t)
∂x

= −z ∂
2w(x, t)
∂x2

= −zw,xx(x, t) (3-4)

The width and thickness of piezoelectric cantilever are very
small compared to its length. For that reason the components T2
and T3 of stress tensor are very small and they can be neglected.
Under the assumptions of a piezoelectric cantilever 31-effect, the
linear constitutive relations can be simplified as follows [15]:

T1 = c-
E
31S1 − e-31E3, (3-5)

D3 = e-31S1 + ε-
S
31E3, (3-6)

where c-
E
31, e-31 and ε-

S
31 are respectively the components 31-effect

of the elastic, the piezoelectric and dielectric constant, D3 and
E3 = −�3(z, t) denote respectively the components of electric dis-
placement and electric field and � is the electric potential. The
electric enthalpy density is obtained as:

H = 1
2

(c-
E
31S

2
1 − 2e-31E3S1 − ε-

S
31E

2
3) (3-7)

According to the Hamilton’s principle, the variation of the action
between any two times t1 and t2 can be obtained as:

ı

∫ t2

t1

(L +W)dt = 0 (3-8)

where L =
∫
˝0

(T −H)d˝ is the Lagrangian expression.

By definition, the kinetic energy is given by [11]:∫
˝0

Td˝ = 1
2

∫ �

0

�0Iẇ
2
,x(x, t)dx + 1

2

∫ �

0

��0ẇ
2(x, t)dx (3-9)

where I =
∫
�z2d� is the moment of inertia of the cross section, �

is the total length, � is the cross-sectional area, ˝0 is the volume
of the piezoelectric cantilever at rest, �0 is the mass density. The
first term of Eq. (3-9) corresponds to the kinetic energy of the cross-
sectional rotation and the second is the kinetic energy of the vertical
translation. The virtual work W can be obtained by the sums of
energies which are created by the electric surface charge Q̄ (t), the
mechanical point force F(t) and the mass M at free end as:

W = −
∫
˙Q

Q̄ (t)V(t)d˙ + F(t)w(�, t) + 1
2
Mẇ2(�, t) (3-10)

where˙Q is the domain boundaries on which the surface charge are
imposed. By replacing the various terms in Eq. (3-8), the expression
of the Hamilton’s principle is obtained as:

ı

∫ t2

t1

(
1
2

∫ �

0

�0(Iẇ2
,x(x, t) + �ẇ2(x, t))dx − 1

2

∫ �

0

c-
E
31Iw

2
,xx(x, t)dx

+
∫ �

0

∫ h/2

−h/2

be-31z�,z(z, t)w,xx(x, t)dzdx + 1
2

∫ h/2

−h/2

b�ε-
S
31�

2
,z(z, t)dz

−
∫
˙Q

Q̄ (t)V(t)d˙ + F(t)w(�, t) + 1
2
Mẇ2(�, t)

)
dt = 0 (3-11)

According to Fig. 1, one side of the piezoelectric cantilever
located in the plan Oyz is fixed. This imposes the kinematic bound-
ary conditions as follows:

w(0, t) = 0 (3-12)

w,x(0, t) = 0 (3-13)

3. Analytical approach

Applying the variational principle to Eq. (3-11) with respect
to the arbitrary variations of the vertical displacement ıw and
the electric potential ı�, the dynamic equilibrium equations are
obtained as:

−�0Iẅ,xx(x, t) + ��0ẅ(x, t) + c-
E
31Iw,xxxx(x, t) = 0 (4-1)

�,zz(z, t) − ˛w,xx(x, t) = 0 (4-2)

with ˛ = −(e-31/ε-
S
31). The equilibrium boundary conditions at x =�

and z = ± (h/2) are:

−c-
E
31Iw,xxx(�, t) +Mẅ(�, t) + �0Iẅ,x(�, t) = F(t) (4-3)



Download English Version:

https://daneshyari.com/en/article/738094

Download Persian Version:

https://daneshyari.com/article/738094

Daneshyari.com

https://daneshyari.com/en/article/738094
https://daneshyari.com/article/738094
https://daneshyari.com

