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• The order of the computational complexity of the EMD is equivalent to FFT.
• Optimized program is proposed to speed up the computation of EMD up to 1000 times.
• Fast HHT with optimized EMD/EEMD algorithm can operate in real-time.
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a b s t r a c t

It has been claimed that the empiricalmodedecomposition (EMD) and its improved version
the ensemble EMD (EEMD) are computation intensive. In this study we will prove that
the time complexity of the EMD/EEMD, which has never been analyzed before, is actually
equivalent to that of the Fourier Transform. Numerical examples are presented to verify
that EMD/EEMD is, in fact, a computationally efficient method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

EMD [1] is a nonlinear and nonstationary time domain decomposition method. It is an adaptive, data-driven algorithm
that decomposes a time series into multiple empirical modes, known as intrinsic mode functions (IMFs). Each IMF
represents a narrow band frequency–amplitude modulation that is often related to a specific physical process. For signals
with intermittent oscillations, one intrinsic mode can comprise oscillations with a variety of wavelengths at different
temporal locations. Collectively, the simultaneous exhibition of these disparate oscillations is known as the mode mixing
phenomenon, which can complicate analyses and obscure physical meanings. To overcome this problem, the EEMD
algorithm [2] and the noise-assisted MEMD [3] have been proposed. In particular, the EEMD has drawn a lot of attention
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Table 1
EMD.

[cm] = Main (NS, nm, y0)

r(t) = y0(t)
for (m = 1 : nm) { % extract each IMF

x(t) = r(t) % x(t) is proto-IMF
for(s = 1 : NS) { % sifting iteration:

[tmax, xmax, tmin, xmin] = identify_extrema(x);
U(t) = spline(tmax, xmax); % Upper envelope
L(t) = spline(tmin, xmin); % Lower envelope
x(t) = x(t) − (U(t) + L(t))/2; % detail extraction (1)

}
cm(t) = x(t) (2)
r(t) = r(t) − x(t) (3)

}

during the past fewyears. During the last decade, the EMD/EEMDwas shown to bemore effective than the traditional Fourier
method inmany problems from various fields such as physics [4], biomedicine [5–8], mechanical health diagnosis [9], image
analysis [10] and others.

It seems a common belief that a major drawback of the EMD/EEMD is that they require a long computation time. For
example, in Ref. [11], the authors report that it takes more than an hour to perform EMD on a signal with 30,000 data points
using a modern personal computer. The enormous amount of computation time hampers the applications of EMD/EEMD in
analyzing long data and pseudo real-time hardware applications. For this reason, parallel computing such as Cuda [12], Open
MP [13] and hardware implementations like VLSI [14] and FPGA [15] have been recently adopted to improve the execution
time.

In this study, we proved that the EMD/EEMD is actually not computation intensive as has been claimed in the past. We
first analyze the time and storage complexity for EMD/EEMDand their variants in different applications under an appropriate
implementation, which is based on single core, sequential implementation without any approximations. Finally, numerical
examples are presented to verify the performance of EMD/EEMD.

The remainder of this article is divided into the following sections: in Section 2, we briefly review the EMD method. In
Section 3 we present an implementation of the EMD/EEMD method and then analyze their time and storage complexities.
Section 4 illustrates the efficacy of the proposed method with experimental results and we conclude our study in Section 5.

2. The EMD algorithm

Given an input signal y0(t), y0 ∈ R, t ∈ Z and t = [1 : n], the EMD decomposes a signal y0(t) into a series of intrinsic
mode functions (IMFs) which are extracted via an iterative sifting process. First, the local maxima and minima of the signal
are connected, respectively, by cubic splines to form the upper/lower envelopes. The average of the two envelopes is then
subtracted from the original signal. This sifting process is then repeated several times (define the number of siftings as NS,
usually 10) to obtain the first IMF that oscillates at relatively higher frequencies than does the residual signal that is obtained
by subtracting the IMF from the original signal. Then, the residual is deemed as the input for a new round of iterations. In
turn, subsequent IMFswith lower oscillation frequencies are derived using the sameprocess and the newly obtained residue.
The result of the EMD is a decomposition of the signal y0(t) into the sum of the IMFs and a residue r(t). That is,

y0(t) =

nm
m=1

cm(t) + r(t)

where nm is the number of IMFs. The EMD algorithm is listed in Table 1.

3. Time and space complexity

3.1. EMD

In this section, we propose an implementation of the EMD and analyze its time and space complexity. The arithmetic
operations involved include addition (ADD), multiplication (MUL), division (DIV ) and comparison (COMP). Fixed-point
arithmetic operations are negligible compared with the floating-point operations. To facilitate the analysis, the EMD
procedure is divided into the main, extrema identification and cubic spline procedures. Capital T and M denote the time
and space (storage) complexity, respectively. The EMD algorithm is listed in Table 1 and is explained in detail below.

3.1.1. Main procedure
Each of the input, residue r(t), proto-IMF x(t) and the upper/lower envelope U(t)/L(t) is of length n and requires

n floating point storage. The output signal consists of nm IMFs each with length of n, hence it requires nm · n floating-
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