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h i g h l i g h t s

• We establish the relationship between homicides and attempted homicides by DFA, DCCA, and DCCA cross-correlation coefficient.
• DCCA cross-correlation coefficient identifies a positive cross-correlation.
• The DFA analysis can be more informative depending on time scale (short or long).
• For short scale DFA did not identify auto-correlations, and for long scales DFA presents a persistent behavior.
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a b s t r a c t

We propose in this paper to establish the relationship between homicides and attempted
homicides by a non-stationary time-series analysis. This analysis will be carried out
by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA),
and DCCA cross-correlation coefficient, ρDCCA(n). Through this analysis we can identify
a positive cross-correlation between homicides and attempted homicides. At the same
time, looked at from the point of view of autocorrelation (DFA), this analysis can be more
informative depending on time scale. For short scale (days), we cannot identify auto-
correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time
scales (n > 90 days) DFA presents a persistent behavior. Finally, the application of this new
type of statistical analysis proved to be efficient and, in this sense, this paper can contribute
to a more accurate descriptive statistics of crime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to political, economic and social factors, crime has been studied and statistically modeled by many researchers. For
example, it is possible to statistically measure the connection between unemployment and crime [1–3], the correlation be-
tween firearms and homicides [4], make a descriptive study of homicides considering author and victim [5], evaluate crime
rates through probabilistic models [6], perform a temporal and spatial study of crime [7,8], analyze the flux of tourists and
increase in crime [9], simulate computationally criminal activity in an urban environment [10], among others. In this way
it is possible to say that crime can be modeled based on the author–victim profile, time, and geographic location, as well
as, other variables. This paper aims to detect and measure the auto-correlation and the cross-correlation of homicides and
attempted homicides in the city of Salvador, located in the state of Bahia (Brazil). Salvador (12°59′S, 38°29′W) is one of
the largest cities in Brazil, with more than 2.7 million people, and with 3787 people per square kilometer [11]. It is worth
mentioning that Salvador will host six matches of the 2014 FIFA World Cup Brazil.

∗ Corresponding author at: Computational Modeling Program – SENAI CIMATEC 41650-010 Salvador, Bahia, Brazil. Tel.: +55 157599922788.
E-mail addresses: gfzebende@hotmail.com, gfzebende@pq.cnpq.br (G.F. Zebende).

0378-4371/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physa.2014.01.015

http://dx.doi.org/10.1016/j.physa.2014.01.015
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2014.01.015&domain=pdf
mailto:gfzebende@hotmail.com
mailto:gfzebende@pq.cnpq.br
http://dx.doi.org/10.1016/j.physa.2014.01.015


A. Machado Filho et al. / Physica A 400 (2014) 12–19 13

The crime was studied in terms of homicides and attempted homicides because these are crimes against people and are
widely used in empirical studies about the determinants of crime. In this sense Fig. 1 shows the time-series of homicides
and attempted homicides per 100,000 citizens. In this figure we can see large irregularities (unpredictable), characteristic of
a nonlinear system. Such systems have been studied from the point of view of complex systems. The complex systems are
studied inmany areas of the natural sciences,mathematics, and the social sciences [12–14]. Complex systemshave nonlinear
behavior, and can be studied by taking into account the properties of fractals [15], such as self-affinity in time series. If, for
example, in a given time-series {u(i)} [16] self-affinity appears, then long range power-law correlations are present [17–19].
This makes the study of complex systems very interesting, because it is possible to identify a universality in different kinds
of problems [20,21]. It is known that, in the real world, data are highly non-stationary [22], andmany conventional methods
of analysis are not suited for non-stationary time-series [23].

For non-stationary time-series, we did our analysis in the point of view of Detrended Fluctuation Analysis, DFA [24],
Detrended Cross-Correlation Analysis, DCCA [25], and DCCA cross-correlation coefficient, ρDCCA [26]. Thus, the rest of the
paper is laid out as follows: Section 2 provides a brief theoretical review of these methods. Section 3 describes the data used
in this paper and presents our results and, finally, Section 4 concludes the paper.

2. Brief review of DFA, DCCA, and ρDCCA

There are situations where a given observable u(i) is measured at successive time intervals, forming a time-series {u(i)}
[16]. Some strategies for time-series analysis have been developed [22,23,27–38]. Today, one of the most popular methods
for nonstationary time-series analysis is the Detrended Fluctuation Analysis (DFA) and will be briefly presented below.

2.1. The DFA method [24]

TheDFAmethodwas developed to analyze long-range power-law correlations in non-stationary systems like in Refs. [24,
29,33,39–47], among others. The DFA method involves the following steps: (see Fig. 2) or Ref. [48].
1. Consider a correlated signal u(i) (daily homicides, attempted homicides), where i = 1, . . . ,Nmax (the total number of

points in the series).We integrate the signal u(i) and obtain y(k) =
k

i=1 u(i)−⟨u⟩, where ⟨u⟩ stands for the average of u;
2. The integrated signal y(k) is divided into boxes of equal length n;
3. For each n-size box, we fit y(k), using a polynomial function of order l, which represents the trend in the box. The y co-

ordinate of the fitting line in each box is denoted by yn(k), since we use a polynomial fitting of order l, we denote the
algorithm by DFA-l;

4. The integrated signal y(k) is detrended by subtracting the local trend yn(k) in each box (of length n);
5. For a given n-size box, the root-mean-square fluctuation, F(n), for this integrated and detrended signal is given by

FDFA(n) =

 1
Nmax

Nmax
k=1

[y(k) − yn(k)]2. (1)

6. The above computation is repeated for a broad range of scales (n-sizes box) to provide a relationship between F(n) and
the box size n.

In accordance with Refs. [24,48], in this paper we used a polynomial fitting of order 1, with n = 4 for the smallest and
n = Nmax/4 for the largest box width. Thus, the DFA method provides a relationship between FDFA(n) (root mean square
fluctuation) and the time scale n, characterized by a power-law:

FDFA(n) ∝ nα. (2)

In thisway,α is the scaling exponent, a self-affinity parameter representing the long-range power-law correlation properties
of the signal; such that if α = 0.5, then the signal is uncorrelated; if α < 0.5, then the correlation in the signal is anti-
persistent; and if α > 0.5, then the correlation in the signal is persistent.

However, we know that many observables can be measured and recorded simultaneously, at successive time intervals,
forming time-series with the same length N [16]. For example, if we have two time-series, then the analysis of the cross-
correlation between these time-series can be carried out. Naturally, in the next section, we apply a generalization of the DFA
method, called detrended cross-correlation analysis (DCCA), to study the long range cross-correlations in the presence of
non-stationarity [49–59].

2.2. The DCCA method [25]

Given two time-series, {u1(i)} and {u2(i)}, we compute the integrated signals R1(k) ≡
k

i=1 u1(i) and R2(k) ≡
k

i=1 u2(i),
where k = 1, . . . ,Nmax. Next,we divide the entire time-series into (N−n) overlapping (or not) boxes, each containing (n+1)
values. For both time series, in each box that starts at i and ends at i+n, we define the local trend,R1,i(k) andR2,i(k) (i ≤ k ≤

i+n), to be the ordinate of a linear least-squares fit.Wedefine the detrendedwalk as the difference between the originalwalk
and the local trend. Next,we calculate the covariance of the residuals in each box f 2DCCA(n, i) ≡ 1/(n+1)

i+n
k=i(R1(k)−R1,i(k))
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