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h i g h l i g h t s

• It is shown that the scaling behaviour of the standard BD and RDSR models are independent of particle evaporation.
• Two power law relations have been found in terms of probability for the BD/RE model.
• By rescaling the data corresponding to the BD/RE model, a fine agreement with the relation introduced by Chou et al. is experienced.
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a b s t r a c t

We study two models for competitive deposition and evaporation of particles from rough
surfaces. The process of deposition is carried out for two models, one according to the
ballistic deposition (BD) and the other according to the random deposition with a surface
relaxation (RDSR). The process of evaporation is the same for both models, where it obeys
the random evaporation model (RE). The probability of the deposition and evaporation is
1−p and p, respectively. We show that the scaling behaviour of the standard BD and RDSR
models are independent of particle evaporation. Particle evaporation only causes a delay
for the scaling behaviour of the models. This delay is independent of the surface size for all
typical probabilities and depends only on the value of p.We obtain two power law relations
in terms of p for the BD/RE model. One of these relations is derived from the ratio of the
crossover times, which is the ratio of the time of surface saturation to the transient time
from RD to BD (t2/t1), and the other relation comes from the ratio of the surface roughness
(W2) observed in time t2 to the surface roughness (W1) in time t1. By rescaling the data
corresponding to the BD/RE model, a fine agreement with the relation introduced by Chou
et al. is experienced.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ability to characterise the spatial and temporal behaviour of the growth process of surfaces and interfaces has proved
to be an important issue in the context of thin films [1], multilayer films [2] and biological surfaces [3,4]. Gaining knowledge
about the behaviour of surface roughness in all stages of the growth process may help one to control electrical, magnetic
and optical properties of the surfaces and interfaces. This also enables study of the crucial parameters involved in the
establishment of the surface [5–7].

As understood in all scientific branches, in order to fully study an observed process, in addition to the analytical approach
a numerical technique needs to be implemented. This enables the study and comparison of the dominant factors of each
process (see Refs. [8–10]). These factors which influence the primary processes (absorption, diffusion and evaporation)
depend on the conditions of the experiments and the particle–surface interactions [6]. Temperature [9,11] is themain factor
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having an effect on diffusion and evaporation from surfaces (see Refs. [6,12]). For typical growth temperatures, sometimes
the evaporation process is ignored. Some examples in this case are growth processes in application to various surfaces, for
example, for Si [13,14] andGaAs growth [15,16]. However, in some cases neglecting the evaporation process is not an option,
see for example, Ref. [17].

The fact that higher temperatures cause the particles to diffuse on the surface in a longer length scale with a higher
evaporation probability [18] motivates the study of various aspects of the evaporation process. Hence, in this work we
consider an ideal model while ignoring the diffusion effects in order to study the efficiency of evaporation. In this context,
Karunasiri et al. [19] in (1 + 1) dimensions and Yao et al. [20] in (2 + 1) dimensions developed an equation enabling the
consideration of evaporation. Some of the well-known discrete models which focus on the microscopic details of surface
growth are the random deposition (RD) [21], the random deposition with surface relaxation (RDSR) [22], the ballistic
deposition (BD) [22,23] and the restricted solid on solid (RSOS) [24] models. In contrast to discrete models, continuous
models focus on macroscopic details of surface growth, for example, Edward–Wilkinson (EW) [25]

∂h(x, t)
∂t

= υ∇
2h(x, t) + η(x, t),

and Kardar–Parisi–Zhang (KPZ) [26]
∂h(x, t)

∂t
= υ∇

2h(x, t) + λ(∇h(x, t))2 + η(x, t),

where υ and λ are the surface tension and velocity, respectively. The EW is a linear equation that describes diffusion of
deposited particles on a surface during growth processes where the KPZ is a non-linear equation which explains surface
fluctuations of rough surfaces. Note that η(x, t) is a Gaussian white noise with a zero mean and ⟨η(x, t)η(x′, t ′)⟩ =

2Dδ(x − x′)δ(t − t ′).
Family and Vicsek [27] introduced three scaling exponents to study the spatio-temporal scale invariant behaviours of

rough surfaces. They described a surface by a set of particles which were placed at the highest position h(i, t) on sites
represented by i at time t . Taking into account periodic boundary conditions during the growth, the root mean square (rms)

roughnessW (L, t) is defined byW (L, t) =


1
L

L
i=1[h(i, t) − ⟨h(t)⟩]2, where, ⟨h(t)⟩ is the average height of the surface at

time t . Furthermore, Family and Vicsek showed that for t ≪ tsat the rms roughness would be W ≈ tβ , and for t ≫ tsat the
rms roughness would be W ≈ Lα . Further, it is assumed that tsat ≈ LZ , where tsat is a crossover time that indicates when
the surface roughness obtains a saturated value. Note that the parameters β , α and Z = α/β are the growth, roughness and
dynamic exponents, respectively. In addition, the scaling function of rms roughness can be written as W (L, t) ≈ Lα f ( t

LZ
).

Note that models with the same scaling exponent lie in the same universality classes [6,7] The BD and RSOS models are
included in the KPZ class while the RDSR model belongs to the EW class.

Inmany real surface growth processes, a competitivemechanismmay take place. Therefore, the dynamics of competitive
models which aremore realistic have been continuously studied [28–39]. Most simulations include deposition of more than
one kind of particles in different growth mechanisms. This is due to various interactions between particles. For example,
Horowitz et al. introduced various competitive models, generically called X-RD [34–36]. The X-models include some well-
known depositing models. This means that the X-correlated model comes into play when the probability is p and the RD
model comes into play when the probability is 1 − p. They numerically found a dynamic scaling ansatz that showed the p
dependence ofW (L, t, p) as

W (L, t, p) : Lα♦p−δF


t
LZ♦p−y


, (1)

and found a scaling relationship between the exponents, where ‘♦’ refers to the X-model. Note that δ and y are two new
scaling exponents. Braunstein et al. [37] introduced a newmodel as constrained EW (CEW) and studied a competitive growth
process CEW-RD, where particles deposit by the rule of CEW with probability p. They showed that as p varies from 0 to 1,
a transition from the KPZ to the EW class is observed. They derived coefficients for the KPZ equation analytically using the
BD-RD and CEW-RD models at small and large probabilities as a power function of p. Oliveira et al. [38] by considering the
RSOSmodel, introduced a competitive model involving deposition and evaporation of particles with probability p and 1−p,
respectively. They found a power law relation for the crossover time from the EW to the KPZ model that had an excellent
agreement with theoretical calculations. For these special systems, with two different crossover points, Chou et al. [39]
presented a new parameter-free scaling relation by using values of the roughness widths in the crossover times.

In order to understand the effects of evaporation on the morphology of a surface, we study effects of deposition and
evaporation of particles on surfaces competitively. Two lattices are considered with the same kind of particles; the particles
can evaporate from both surfaces with the probability of p as in the RE model, and deposit on both surfaces with the
probability 1 − p but with different models. For one surface, the deposition obeys the BD model and for the other surface
it obeys the RDSR model. In our simulations, we have two regimes with different scaling behaviours before the surface
saturates to a fixed roughness width. We find a relation for important surface parameters in terms of the probability p. In
addition, we check the validity of the new scaling relation which was introduced by Chou et al. [39] Our work is organised
as follows: the methods of surface growth are discussed in detail in the second section; numerical simulations, scaling
exponents are stated and conclusions are discussed in the third section.
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