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h i g h l i g h t s

• We considered mutualistic Lotka–Volterra model with a +/+ interaction with spatial diffusions.
• Wave front solutions in one dimension are investigated analytically and numerically.
• The propagating wave profiles beyond the simple Fisher wave fronts are revealed.
• The presence of diffusion can bring two situations: win–win situation and dominating situation.
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a b s t r a c t

We consider the population dynamics of two species described by the mutualistic
Lotka–Volterra model with a +/+ interaction in the presence of spatial diffusions. The
results demonstrate that diffusion does not affect the system’s stability but it brings two
situations: one is a win–win situation where both species propagate with the same largest
speed; in the other situation the aggressive species has two propagating wave fronts and
the other species travels with a single slowwave front. Our model may help to understand
the evolution of mutualism.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mutualisms are not uncommon in nature. There are models attempting to describe mutualist interactions between two
species [1–4]. The well-known Lotka–Volterra (LV) model was one of the classical models for studying the cross-linked
populations [5–7]. The global stability analysis for the LV mutualistic systems has been well done by some authors [8–11].
They showed that the mutualistic populations would grow to unlimited quantities exceeding their carrying capacities.
However the unlimited growth is biologically unrealistic. Obviously there are many factors such as limited spaces or food
resources, which are closely related to the evolution of mutualism. So considering the motion or migration of interacting
species would be more close to the reality.

In fact there have been several analytical studies focused on the effect of spacial diffusion on the competitive LV system.
Vance and Allen showed that dispersal did not always promote the stability of the population [12,13]. Takeuchi andHastings
suggested that diffusion did not affect the system’s stability [14,15]. However for the LVmodelwith diffusion, the population
dynamics resembles the Fisher–Kolmogorov equation [16]. So there exist traveling wave solutions propagating from one
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fixed point to another, which would give rise to interesting spatiotemporal dynamics. Thus from wave propagation, one
could observe the evolution of the system directly. Previous researchmainly focused on the competitive diffusive LVmodel.
Most of them studied the existence of traveling Fisher’s waves that connect two states (from the stable state to the unstable
state) in certain region of the parameter space. Ref. [17] showed that the intermediate equilibrium state played an important
role in the wave propagation as first mentioned by Tang and Fife in the uncoupled logistic growth model [18].

In this paper, considering the LVmodel of twomutual beneficial species with spatial diffusionwe investigated the steady
wave front propagation not limited to the simple Fisher’s waves. We examined the effect of intermediate equilibrium on
the wave front profiles andwave speeds. Analytical results for the wave front speeds are obtained and verified by numerical
solutions. It was found that there exists a combination of two wave fronts with different speeds, which is different from the
competitive LV model. Moreover in presence of diffusion the stability of the system does not make changes but there are
two situations: one situation is a win–win situation where both species travel with the same speed and the total population
has a large growth rate. In the other situation one species dominates. The aggressive species propagates with a combination
of two wave fronts and the other species grows with a single slow wave front.

2. Models

Weconsider a two-species LVmodel inwhich each species undergoes spatial diffusion. The populations of the two species
are denoted by n1(x, t) and n2(x, t). They obey the reaction–diffusion type PDEs:

∂n1

∂t
= d1

∂2n1

∂x2
+ r1n1(1 − n1 + a12n2)

∂n2

∂t
= d2

∂2n2

∂x2
+ r2n2(1 − n2 + a21n1)

(1)

where dα > 0 and rα > 0(α = 1, 2) are the diffusion coefficients and proliferation rates respectively. a12, a21 > 0 describes
the strength of mutualism, the environmental carrying capacity was taken to be 1. There are two types of interactions
between the individuals in the system: intraspecific competition and interspecific mutual benefits. The parameters aαβ

determines the mutual interaction strengths between two species. In this paper, we consider systems in one dimension and
investigate the associated wave propagations.

In the presence of diffusion, Eqs. (1) resemble the well studied Fisher–Kolmogorov equation [16]. In the corresponding
kinetic ODEs, steady states occur at the fixed points: (0, 0), (1, 0), (0, 1), (n1

∗, n2
∗), where n1

∗
=

1+a12
1−a12a21

, n2
∗

=
1+a21

1−a12a21
.

The last steady state exists only when a12a21 < 1 and the global stability analysis for this case has been done by several
authors [8–11]. Notice in the last steady state the species populations exceed their carrying capacities. These positive
interactions benefited all individuals in the system.

According to the phase plane analysis for the non-diffusive LVmodel withmutualistic interactions, there were two cases
in this mutualistic Lotka–Volterra system [19]. When a12a21 < 1 the non-zero steady state (n1

∗, n2
∗) exists, all interior

orbits converged to this fixed point as shown in Fig. 1(a). On the other hand, when a12a21 > 1, all steady states lay on the
coordinate axes, and all interior orbits diverge to infinity as shown in Fig. 1(b). In this articlewemainly focus on the first case.
The wave fronts in Eq. (1) has been studied by many groups [12–16]. Most results demonstrated the existence of Fisher’s
wave fronts that connect two equilibrium fixed points. In this paper, using analytical and numerical methods, we study the
stable propagating behavior beyond the simple Fisher’s wave profiles.

3. Analytical results for wave speeds

Assuming local plane wavefronts with n1(x, t) = U1(x − c1t) and n2(x, t) = U2(x − c2t), then Eqs. (1) can be expressed
as a four dimensional ODE dynamical system [20]:

U1
′
= V1

U2
′
= V2

d1V1
′
= −c1V1 − r1U1(1 − U1 + a12U2)

d2V2
′
= −c2V2 − r2U2(1 − U2 + a21U1).

(2)

This ODE system always has three fixed points X0 = (0, 0, 0, 0), X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0) and another fixed point
X3 = (n1

∗, n2
∗, 0, 0) exists only when a12a21 < 1. Nonlinear dynamic was employed to analyze these fixed points one by

one. Refer to the competitive Lotka–Volterra model we could analytically get the wavefront speed at each fixed point [17]:
In the (U1,U2, V1, V2) phase space there are three unstable steady states X0, X1, X2 and a stable one X3. From the

experience gained from the analysis of Fisher–Kolmogorov equation, there is thus the possibility of a travelingwave solution
from unstable points to stable one. So we should look for solutions (U1(x),U2(x)) of Eqs. (2) with the boundary conditions.
For X0 = (0, 0, 0, 0), the boundary condition is: U1(−∞) = n1

∗,U2(−∞) = n2
∗,U1(∞) = 0,U2(∞) = 0, we consider
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