
Physica A 393 (2014) 76–85

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Diffusion of relativistic gas mixtures in gravitational fields
Gilberto M. Kremer ∗

Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil

h i g h l i g h t s

• Fick’s law in gravitational fields.
• Dependence of the diffusion coefficient on the gravitational field.
• Modified Marle model equation.

a r t i c l e i n f o

Article history:
Received 17 June 2013
Received in revised form 2 September 2013
Available online 19 September 2013

Keywords:
Relativistic gas mixtures
Schwarzschild metric
Fick law
Diffusion coefficient
Boltzmann equation
Modified Marle model equation

a b s t r a c t

A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is
studied on the basis of a relativistic Boltzmann equation in the presence of gravitational
fields. A BGK-type model equation of the collision operator of the Boltzmann equation is
used in order to compute the non-equilibrium distribution functions by the Chapman–
Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-
diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms
proportional to the gradients of concentration and pressure. The other two are of the same
nature as those which appear in Fourier’s law in the presence of gravitational fields and are
related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law
these last two terms are of non-relativistic order. Furthermore, it is shown that the coeffi-
cients of diffusion depend on the gravitational potential and become smaller than those in
its absence.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Research on the non-equilibrium properties of relativistic gases using the Boltzmann equation in gravitational fields
is a subject few have explored in the literature. An important contribution was due to Bernstein [1], who obtained the
constitutive equation for the non-equilibrium pressure of a relativistic gas and the corresponding transport coefficient of
bulk viscosity in a Friedmann–Robertson–Walker metric.

Recently, a relativistic gas in a gravitational field was analyzed in order to determine the influence of the gravitational
potential gradient on Fourier’s law [2,3] and the influence of the gravitational potential on the transport coefficients [3].

According to Ref. [3] the heat flux in Fourier’s law has three contributions: the usual temperature gradient and two
relativistic terms. One of them – proposed by Eckart from a thermodynamic theory [4] – is connected to the inertia of
energy and represents an isothermal heat flux whenmatter is accelerated. The other – suggested by Tolman [5,6] – requires
that in the absence of an acceleration a state of equilibrium of a relativistic gas in a gravitational field is achieved only if the
temperature gradient is counterbalanced by a gravitational potential gradient.

In this work we are interested only in analyzing Fick’s law in the presence of gravitational fields without the
determination of the thermal-diffusion cross-effect and of the heat flux with the corresponding diffusion-thermal cross-
effect, which will be subject of a forthcoming paper. It differs from the work in [7], where diffusion in curved space–time
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is analyzed by using the Fokker–Planck equation. As in [3], we use the Schwarzschild metric and analyze a relativistic gas
mixture of constituents which have non-disparate rest masses.

Here we show that Fick’s law in the presence of gravitational fields has four contributions. The usual contributions due
to the concentration gradient and pressure gradient, as well as the two that appear in Fourier’s law and are proportional
to the acceleration and gravitational potential gradient. However, unlike Fourier’s law these last two contributions are not
of relativistic order. We have also obtained that the diffusion coefficients depend on the gravitational potential, becoming
smaller than those in its absence.

Thework is structured as follows. In Section 2we introduce the Schwarzschildmetric, the systemof Boltzmann equations
in the presence of a gravitational fields and the two first moments of the distribution functions with their corresponding
balance equations. A BGK-type model of the Boltzmann equation is introduced in Section 3, which depends on a reference
distribution function, determined from the assumption that the balance equations of the full Boltzmann equation and of the
BGK-type model lead to the same production terms. The non-equilibrium distribution functions are calculated in Section 4
by using the Chapman–Enskog method. In Section 5 the constitutive equations for the diffusion fluxes – which correspond
to Fick’s law – are determined from the non-equilibrium distribution functions and the diffusion coefficients are obtained.
In the last section the main conclusions of the work are stated. We close the work with two appendices. In the first it is
shown how to calculate the production terms of the partial balance equations of the energy–momentum tensors, while in
the second the components of the Christoffel symbols in a Schwarzschild metric are given.

2. Basic equations

We consider a relativistic gasmixture of r constituents in a Riemannian spacewithmetric tensor gµν , where the particles
of constituent a = 1, . . . , r have rest mass ma and are characterized by the space–time coordinates (xµ) = (ct, x) and
momenta (pµ

a ) = (p0a, pa). The length of themomentum four-vector is constant so that gµνp
µ
a pν

a = m2
ac

2, which implies that

p0a =
pa0 − g0ipia

g00
, pa0 =


g00m2c2 +


g0ig0j − g00gij


piap

j
a. (1)

As in [3] we shall adopt the isotropic Schwarzschild metric

ds2 = g0(r)

dx0
2

− g1(r)δijdxidxj, g0(r) =


1 −
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2c2r

2

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, (2)

where G denotes the gravitational constant andM the mass of the spherical source.
In terms of the isotropic Schwarzschild metric (2), Eqs. (1) reduce to

p0a =
pa0
g0

pa0 =
√
g0

m2

ac2 + g1|pa|
2,

√
−g =


g0g3

1 (3)

where g = det(gµν).
The components of the four-velocity in the isotropic Schwarzschild metric are

Uµ
=


c

g0 − v2/c2
,

v
g0 − v2/c2


, (4)

which in a co-moving frame (v = 0) reduces to Uµ
=

c/

√
g0, 0


.

A state of the relativistic mixture of r constituents in the phase space spanned by the space–time and momentum
coordinates is described by the set of one-particle distribution functions f (x, pa, t) ≡ fa, (a = 1, 2, . . . , r) such that
f (x, pa, t)d3xd3pa at time t gives the number of particles of constituent a in the volume element d3x about x and with
momenta in the range d3pa about pa.

In the presence of gravitational fields the one-particle distribution function of constituent a satisfies the Boltzmann
equation (see e.g. Ref. [8])

pµ
a

∂ fa
∂xµ

− Γ i
µνp

µ
a p

ν
a
∂ fa
∂pia

=

r
b=1


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a f
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√
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d3pb
pb0

. (5)

Here Γ i
µν are the Christoffel symbols, Fba =


(pµ

a pbµ)2 − m2
am

2
bc4 is the so-called invariant flux, while σab and dΩ denote

the invariant differential elastic cross-section and the element of solid angle that characterizes a binary collision between the
particles of constituent a with those of constituent b, respectively. The binary collision is characterized by the momentum
four-vectors of the particles of the two constituents pα

a and pα
b before collision and p′α

a and p′α
b after collision, which obey the

energy–momentum conservation law pα
a +pα

b = p′α
a +p′α

b . Furthermore, the following abbreviations were introduced in (5):

f ′

a ≡ f (x, p′

a, t), f ′

b ≡ f (x, p′

b, t), fa ≡ f (x, pa, t), fb ≡ f (x, pb, t). (6)
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