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h i g h l i g h t s

• A method for the macroscopic characterization of time series data is presented.
• Thermodynamics-like functions are used to measure macroscopic properties contained in a dataset.
• The chronological information available in the Vostok records is characterized from a thermodynamics-like point of view.
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a b s t r a c t

This paper describes a method for getting a synthesis of the knowledge about a given
system, assuming that a data set x of measurements of a variable Ξ is known: i.e., separate
data are combined in order to form a coherent whole, à la thermodynamics. For getting
the macroscopic characterization of time series data, one takes advantage of the average
absolute deviation concept togetherwith an already known thermodynamic-like approach.

The method is applied to the macroscopic characterization of existing time series for
the Vostok Antarctica ice cores (deuterium content of the ice and temperature variation)
for a depth range between 0 and 3,310meters, and the age of the ice between 0 and 422,766
years before the present.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a sequence of observations taken sequentially in time, i.e., a time series x := {x1, x2, . . . , xN }, where xn is the
result of the measurement of a given variable Ξ at time tn. The purpose of this paper is to propose a theoretical framework
for the characterization of the sequence x by using the thermodynamics-like method presented in Refs. [1,2].

Different from the thermodynamics that has a phenomenological origin involving e.g. heat engines or the principle of
Thomson and Clausius of the impossibility of perpetual motion machines of the second kind [3], the thermodynamics-like
method in Refs. [1,2] is a purely theoretical formulation that is based on a quantitative measure of information developed
by Hartley in 1928 and applied to communications problems [4]. Given an alphabet with s symbols and a message of length
n, the amount of information contained in this message is equal to the amount of information of n messages of length one.
This requirement is satisfied only by the logarithm function to base b (i.e., logb) and, therefore, the quantitative measure of
information is Hn := n logb(s) = logb(sn). If b = 2 and s = 2, the unit of information is the bit, and H2 = log2(2n) gives the
bit-number [5].
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The Hartley measure of information allows a probabilistic interpretation based on the uncertainty of an event n, which
has probability Pn of occurring [5, Section 4.1]. The so-called Hartley formula En(Pn) := − lnb(Pn) gives a number which
measures the amount of information, that one gains when one learns of the occurrence of this event [6,7]. In what follows
the natural logarithm is used (b = e, ln := lne), and the unit of information is the nat.

In Ref. [2] a quantum mechanical system with Hamiltonian Ĥ and eigenvalue equation Ĥ|φn⟩ = En|φn⟩ is considered,
and the following truncated canonical probability distribution is obtained:

Pn(β) =
ωN (P(β))

ZN (β)
exp (−βEn) , for n = 1, 2, 3, . . . , N . (1)

Here, N states are taken into account (N < ∞) and β > 0 is a characteristic parameter of the system that is associated
with a ‘‘virtual temperature’’ scale T := 1/(kBβ), where kB is some conventional positive constant, such that kBT has
dimensions of energy. If the system is in thermal equilibriumwith a thermostat adjusted at the ‘‘real temperature’’ T , β can
be interpreted as the thermodynamic β = 1/(kBT ), where kB is the Boltzmann constant, and T is the absolute temperature
of the system (Kelvin degrees). The quantity ωN = ωN (P(β)) :=

N
m=1 Pm(β) is the degree of completeness of the set

P(β) := {Pn(β)|n = 1, 2, 3, . . . , N }, and ZN (β) is the partition function of the quantum statistical mechanics, i.e.,

ZN (β) :=

N
m=1

exp (−βEm) . (2)

Thus, according to Eq. (1), given the energy eigenvalues {E1, E2, . . . , EN } and the parameter β , one can construct the
truncated canonical probability distribution Pn(β), for n = 1, 2, 3, . . . , N .

Once the probability distribution P is given, the Hartley information or pseudo-energy En (P(β)) := − ln (Pn(β)) pro-
vided by the observation of the n-th state becomes a basic quantity of the theory. The second central quantity in the theory
is the escort probability set {pn (P(β), q) , n = 1, 2, . . . , N }, a concept created by Beck and Schögl [5] and later used by
the nonextensive statistical mechanics [8, and references therein], where the entropic index q (q ∈ [0, ∞)) is an arbitrary
real nonnegative parameter. Expressions (1) satisfy the important property that pn (P(β), q) = Pn(qβ)/ωN (P(qβ)), i.e., the
escort probability pn (P(β), q) coincides with the real probability Pn(qβ), with the exception of the normalization factor
1/ωN (P(qβ)) (see Eq. (11) in Ref. [2]). Consequently, the probability distribution given by Eq. (1) allows us to overcome the
problems pointed out in the paper entitled ‘‘The role of constraints within generalized nonextensive statistics’’ [9,10].

At this point one has all the essential ingredients for evaluating ‘‘average values’’ of physical entities with respect to the
escort probability set and, in this way, a macro-description of the system arises by taking advantage of some q-dependent
thermodynamic-like functions [2]. The most relevant functions are classified as analogous to the familiar description of the
standard quantum statistical mechanics (SQSM) or as new entities belonging to themodified quantum statistical mechanics
(MQSM):

• SQSM. Average energy U(P(β), q), Shannon entropy S (P(β), q), Helmholtz free energy F (P(β), q), and heat-capacity
C(P(β), q).

• MQSM. In this case, the corresponding quantities are named pseudo-. . . (e.g. pseudo-energy), and they are denoted as
U (P(β), q) , S (P(β), q), F (P(β), q), and C (P(β), q), respectively.

Whereas classical thermodynamics deals with systems consisting of a larger number of particles or subsystems (i.e., atoms
or molecules), the method presented in Refs. [1,2], and also used in this paper, can also be applied to systems composed of a
small number of elements. Thus, one can theorize about the possibility of associating to a data set x a probability distribution
P . In this way, the method summarized in this section allows a macroscopic description of the data set X .

The structure of the paper is the following. Section 2 describes a method for assigning a probability distribution P to the
sequence x composed by N nonvanishing elements xn, for n = 1, 2, . . . , N . In Section 3, the method proposed in Refs. [1,2]
is applied directly to P , and the basic thermodynamic-like functions required for the macroscopic description of the set x
are established. At this stage, one takes advantage of the average absolute deviation of the set x.

In Section 4, the method is applied to the characterization of historical records obtained by researchers from France,
Russia and the USA for the Vostok Antarctica ice cores [11–14]. The core is analyzed with a spatial distance of 1 m between
the samples, and a time scale is linked to the depth. The data collected in Ref. [15] includes: (1) the depth range between 0
and 3,310 meters (m), (2) the age of the ice between 0 and 422,766 years before the present (years BP), (3) the deuterium
content of the ice (δD) inh SMOW (StandardMean Ocean SeaWater), and (4) the isotope temperature record variation (1T ,
in °C) with reference to the mean recent time value. The variable x could be chosen as δD or 1T , both of them characterized
by time series with 3311 known values [15].

Finally, Section 5 concludes with some remarks.

2. Assembling an energy probability distribution

In this section, Eqs. (1) are considered from a point of view that differs from the quantummechanical approach reviewed
in Section 1. Assume that a hypothetical observer (i) knows the time series x and decides to describe the system by assigning
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